Eidgenössisches Verkehrs- und Energiewirtschaftsdepartement Bundesamt für Strassenbau

Département fédéral des transports, des communications et de l'énergie. Office fédéral des routes

Dipartimento federale dei trasporti, delle comunicazioni e delle energie Ufficio federale delle strade

Niveau de sécurité requis pour l'évaluation de ponts-routes existants

Erforderliches Sicherheitsniveau für die Überprüfung bestehender Brücken

Ecole Polytechnique Fédérale, Lausanne

MCS – Maintenance, Construction et Sécurité des ouvrages Simon F. Bailey, Dr sc. techn., ing. civil BSc/SIA Sacha Antille, ing. civil dipl. EPFL Pierre Béguin, ing. civil dipl. EPFL Daniel Imhof, ing. civil, dipl. EPFL/SIA Eugen Brühwiler, Prof. Dr sc. techn., ing. civil dipl. EPFZ/SIA

Mandat de recherche 84/99 effectué à la demande du groupe de travail Recherche en matière de ponts

Avril 2002

OFFICE FÉDÉRAL DES ROUTES

Mandat de recherche 84/99 effectué à la demande du groupe de travail Recherche en matière de ponts

Niveau de sécurité requis pour l'évaluation de ponts-routes existants

Erforderliches Sicherheitsniveau für die Überprüfung bestehender Brücken

Centre de recherche

MCS – Maintenance, Construction et Sécurité des ouvrages ICOM – Construction Métallique EPFL, Lausanne

Simon F. Bailey, Dr sc. techn., ing. civil BSc/SIA
Sacha Antille, ing. civil dipl. EPFL
Pierre Béguin, ing. civil dipl. EPFL
Daniel Imhof, ing. civil dipl. EPFL/SIA
Eugen Brühwiler, Prof. Dr. sc. techn., ing. civil dipl. EPFZ/SIA

Avril 2002

TABLE DES MATIÈRES

i	\mathbf{AV}	ANT-PROPOS	3
ii	рŕ	SUMÉ	1
iii		MMARY	
iv	ZUS	SAMMENFASSUNG	6
v	DÉ	FINITIONS	7
1	INT	TRODUCTION	7
	1.1	MOTIVATION	7
	1.2	BUTS ET LIMITES DE LA RECHERCHE	7
	1.3	Démarche	8
2	ÉT	AT DES CONNAISSANCES	9
	2.1	Introduction	
	2.2	RECHERCHES BIBLIOGRAPHIQUES	9
	2.2.	.1 Etude des accidents et des risques	9
	2.2.		
	2.2.	.3 Niveau de sécurité requis	11
	2.3	Directives existant À l'Étranger	13
	2.4	CONCLUSIONS	13
3	ÉT	UDE DE CAS D'EFFONDREMENTS DE PONTS	14
	3.1	Introduction	14
	3.2	CAS D'EFFONDREMENTS DE PONTS	16
	3.2.	.1 Effondrements de ponts en construction	16
	3.2.	.2 Dommages	16
	3.2.	.3 Effondrments de ponts en service	16
	3.2.	.4 Causes techniques deseffondrements de ponts en service	16
	3.3	Synthèse	18
4	RIS	SQUES DANS LA SOCIÉTÉ	20
	4.1	Introduction	20
	4.2	ÉTUDES STATISTIQUES	20
	4.3	PERCEPTION DU RISQUE	22
	4.4	ACCEPTATION DU RISQUE.	23
	4.5	RISQUES POUR LES PONTS-ROUTES	24
	4.5.	.1 Probabilité individuelle de trouver la mort sur un pont-route : Limite inférieure	24
	4.5.	.2 Probabilité individuelle de trouver la mort sur un pont-route : Limite supérieure	24
5	PA	RAMÈTRES INFLUENÇANT LA FIABILITÉ	25
	5.1	Introduction	

	5.2	PARAMÈTRES LIÉS À LA FONCTION (« EXTERNES »)	25
	5.2.1	l Description des paramètres	25
	5.2.2	2 Grandeur des dommages suite à la ruine	25
	5.2.3	3 Valeur d'utilisation	29
	5.2.4	4 Valeurs immatérielles	30
	5.3	PARAMÈTRES LIÉS À LA STRUCTURE ("INTERNES")	32
	5.3.1	1 Introduction	32
	5.3.2	2 Incertitudes liées aux actions et aux résistances	32
	5.3.3	3 Fiabilité des systèmes structuraux	33
	5.3.4	4 Inspectabilité, surveillance	38
6	NIV	EAUX DE SÉCURITÉ REQUIS	39
	6.1	SITUATION DE RISQUE	40
	6.2	CATÉGORIE DE RISQUE	40
	6.3	INDICE DE FIABILITÉ CIBLE	42
	6.4	REMARQUE FINALE	42
7	EXE	EMPLES D'APPLICATIONS	43
	7.1	Introduction	43
	7.2	Passage inférieur de Perroy	44
	7.3	Passage supérieur du Coude	45
	7.4	PONT SUR L'AUBONNE	46
	7.5	COMPARAISON DES RÉSULTATS	46
3	CON	NCLUSIONS	48
.	DID	LIOGRAPHIE	40
•			
4	NNEXE	ES A1. RUINES DE PONTS SURVENUES EN SERVICE	54
4	NNEXE	ES A2. RUINES DE PONTS SURVENUES EN CONSTRUCTION	59

i AVANT-PROPOS

Lors du dimensionnement d'un *nouveau pont*, le niveau de sécurité n'est pas considéré explicitement. L'expérience montre que le niveau de sécurité, préconisé par les normes de dimensionnement, est probablement plus que suffisant. Etant donné qu'une optimisation de la quantité de matériaux par rapport à la marge de sécurité ne se justifie pas économiquement, la recherche du niveau de sécurité requis n'a jamais été de première importance.

Par contre, lors de l'évaluation d'un *pont existant*, la décision pour une intervention (rétablissement de la sécurité structurale, augmentation de la résistance des éléments structuraux) est motivée par une vérification non satisfaite de la sécurité structurale d'un ou de plusieurs éléments porteurs d'un pont. De plus, la frontière entre une intervention lourde ou légère est souvent marquée ; par exemple, le poids supplémentaire apporté par une réfection du tablier peut également provoquer un renforcement de la structure porteuse primaire. Une étude plus approfondie de la sécurité structurale pourrait donc permettre de limiter, voire même, d'éviter les interventions de construction lourde.

En conséquence, il y a un besoin de mieux connaître le niveau de sécurité minimale acceptable. Dans un cadre plus complet, la fiabilité adéquate est fortement liée à une optimisation en terme de rapport entre le coût et le bénéfice d'une (non-)intervention. En plus, les aspects de la sécurité structurale doivent être complétés en considérant aussi la performance (au niveau de l'aptitude au service) et la valeur économique d'un pont. Donc, une approche complète est nécessaire pour déterminer l'intervention optimale pour un pont existant tout en respectant le niveau de sécurité requis.

Dans le cadre du mandat de recherche 84/99 attribué par l'Office Fédéral des Routes (OFROU), une méthodologie est développée pour définir le niveau de sécurité requis comme étant une fonction du risque associé à des défaillances de ponts. La présente recherche est aussi une contribution à une approche de sécurité *basée sur le risque* qui considère la probabilité de défaillance <u>et</u> l'étendue des dommages suite à la défaillance.

Les auteurs tiennent à remercier l'Office Fédéral des Routes (OFROU) et les membres de la commission d'accompagnement de ce mandat de recherche, à savoir Messieurs P. Matt (président), M. Donzel, le Prof. R. Favre, Prof. A. Muttoni, H. Fleischer, P. Wüst et H. Figi.

Lausanne, avril 2002

Prof. E. Brühwiler

ii RÉSUMÉ

Ce rapport présente les résultats d'une étude sur le niveau de sécurité requis pour l'évaluation des pontsroutes existants. La philosophie de l'étude consiste à définir une fiabilité cible comme étant une fonction du risque associé à une défaillance, plutôt que de considérer le niveau de sécurité imposé par les normes de construction. L'étude s'est donc concentrée sur une analyse du risque associé aux défaillances de pontsroutes et aux risques acceptés par le public lors d'activités quotidiennes. Cette comparaison de risques est ensuite utilisée afin de définir un niveau de risque acceptable pour l'évaluation des ponts-routes existants.

La motivation de l'étude est d'améliorer l'évaluation des ponts existants par une évaluation plus détaillée et précise, dans le but d'éviter des interventions sur des structures qui ont déjà une sécurité suffisante. Ceci est le danger lorsque les normes de construction ou les niveaux de sécurité des nouvelles constructions sont appliqués tel-quel à l'évaluation des ponts existants.

En comparaison avec le dimensionnement de nouvelles structures, il y a de multiples raisons de traiter les structures existantes différemment. Les risques et les incertitudes sont moindres une fois que la structure est entrée en service avec succès et que son utilisation est satisfaisante. Environ 40 % des accidents de ponts ont lieu durant la construction, et sont principalement dus à des erreurs humaines. Il n'y a donc aucune raison de couvrir ces risques lors de l'évaluation d'un pont existant. Des interventions pour augmenter la capacité portante de ponts existants sont relativement coûteuses, ce qui justifie une évaluation plus détaillée.

Il est important de noter que le but de l'étude n'est pas de réduire globalement le niveau de sécurité du parc de ponts, mais plutôt de cibler un niveau uniforme du risque acceptable. L'approche proposée dans ce rapport est de définir un niveau de sécurité requis comme étant une fonction de situations de risque, plutôt que d'appliquer un même niveau de sécurité requis pour tous les ponts et scénarios de risque. Cette approche nécessite les étapes suivantes :

- identification des situations de risque prédominantes.
- définition des conséquences d'une situation de risque en termes de dommage et de l'importance économique du pont.
- sélection d'un niveau de sécurité requis comme étant une fonction de l'ampleur de ces conséquences.

Le niveau de sécurité requis est ainsi défini comme une fonction de paramètres « externes » représentant la valeur et l'importance d'une structure. Ce niveau de sécurité requis est ensuite comparé à la sécurité estimée, calculée à partir des paramètres « internes » décrivant l'état du pont. Les méthodes pour le calcul de la sécurité des ponts sont également brièvement présentées dans le rapport, faisant référence à d'autres sources de conseils sur le sujet.

Le rapport conclut avec un guide concis et pratique pour la sélection d'un niveau de sécurité requis et des exemples d'application sont donnés pour des ponts-routes.

iii SUMMARY

This report presents the results of a study of the target safety level required for the evaluation of existing highway bridges. The philosophy of the study is to define target safety levels as a function of the risk associated with bridge failures, rather than considering the target safety level implied by design codes. The study has therefore focused on surveys of the risk associated with bridge failures and the risk accepted by the public in daily activities. These risks are then used to define an acceptable level of risk to be used for evaluating existing road bridges.

The motivation for the study is to improve the evaluation of existing bridges with a view to avoiding interventions on structures that are already adequately safe. This is the danger when design codes, or design levels of target safety, are applied to the evaluation of existing bridges.

Compared to the design of new structures, there are the following reasons for treating existing structures differently. There are fewer hazards and less uncertainty once a structure has successfully entered service and performed satisfactorily. For example, 40 % of bridge accidents occur during construction, mainly due to human error, and there is no need to cover this hazard when evaluating an existing bridge. Also, measures to increase the safety of an existing bridge are relatively costly.

It is important to note that the aim of the study is not to reduce safety levels globally throughout the bridge stock, but rather to target a uniform level of acceptable risk. The approach proposed in this report is to define target safety levels as a function of the hazard scenario under consideration, rather than applying a uniform target safety level to all scenarios and bridges. This approach involves the following steps:

- Identification of hazard scenarios.
- Definition of the consequences of a given hazard scenario with respect to damage and the economic importance of the bridge.
- Selection of the target safety level as a function of the magnitude of these consequences.

The target safety level is thus derived as a function of "external" parameters representing the value and importance of a structure. This target safety level is then compared to the estimated safety, which is calculated using "internal" parameters describing the state of the bridge. Methods for the calculation of bridge safety are also presented briefly in the report, making reference to other sources of guidance on the subject.

The report concludes with a concise practical guide to the selection of target safety level and a number of examples for road bridges.

iv **ZUSAMMENFASSUNG**

Der vorliegende Bericht enthält die Ergebnisse einer Studie über das erforderliche Sicherheitsniveau für die Überprüfung bestehender Strassenbrücken. Ziel dieser Forschung war es, die Zuverlässigkeit einer Brücke in Abhängigkeit des Versagensrisikos zu bestimmen und nicht, wie beim üblichen Vorgehen, das aus der Anwendung der Konstruktionsnormen resultierende Sicherheitsniveau zu übernehmen. Um dieses Ziel zu erreichen, wurden Brückenunfälle analysiert und das von der Gesellschaft akzeptierte Risiko für diverse Aktivitäten des täglichen Lebens ermittelt. Diese Risiken wurden mit dem Risiko eines Brückenunfalls verglichen, um daraus das akzeptierte Risiko zur Überprüfung bestehender Strassenbrücken abzuleiten.

Mit den gewonnenen Erkenntnissen soll die Überprüfung bestehender Strassenbrücken verbessert werden, indem die Tragsicherheit einer Brücke mit einem detaillierteren Nachweis eher nachgewiesen werden kann als wenn einzig basierend auf den Konstruktionsnormen der Tragsicherheitsnachweis geführt wird. Damit sollen bauliche Eingriffe (Instandsetzungen, Verstärkungen) möglichst vermieden werden.

Im Vergleich zur Bemessung neuer Tragwerke gibt es mehrere Gründe, die bestehenden Bauwerke anders zu behandeln. Bei einer bestehenden Brücke gibt es weniger Unsicherheiten, da sie ja ihre Gebrauchstauglichkeit bereits bewiesen hat. Zudem ereignen sich 40 % aller Brückenunfälle bereits während dem Bau. Zur Beurteilung bestehender Brücken sind diese meistens auf menschliches Versagen zurückzuführende Unfälle nicht zu berücksichtigen. Schliesslich sind bauliche Massnahmen zur Erhöhung der Tragfähigkeit bestehender Brücken vergleichsweise kostspielig, was einen weitergehenden Nachweis gerechtfertigt.

Es ist wichtig zu präzisieren, dass das Ziel dieser Studie nicht darin besteht, das globale Sicherheitsniveau von Brücken zu vermindern, sondern ein gleichmässiges akzeptiertes Risiko für Versagensszenarien anzustreben. In diesem Bericht werden deshalb akzeptierte Sicherheitsniveaus in Abhängigkeit des Gefährdungsbilds bestimmt, indem wie folgt vorgegangen wurde:

- Ermittlung der massgebenden Gefährdungsbilder
- Beurteilung eines gegebenen Gefährdungsbilds bezüglich mögliche Schadensgrösse und wirtschaftliche Bedeutung der Brücke
- Ermittlung des akzeptierten Sicherheitsniveaus in Abhängigkeit des Schadensausmasses

Das akzeptierte Sicherheitsniveau wird aufgrund « äusserer » Parameter definiert, die den Wert und die wirtschaftliche Bedeutung der Brücke beschreiben. Dieses Ziel-Sicherheitsniveau wird im Sicherheitsnachweis mit der rechnerisch ermittelten, effektiven Tragsicherheit verglichen. Diese wird aufgrund « innerer » Parameter ermittelt, die den Zustand der untersuchten Brücke beschreiben. Entsprechende Methoden werden kurz dargestellt, und es wird auf entsprechende Literatur hingewiesen.

Der Bericht schliesst mit einem Leitfaden zur Ermittlung des akzeptierten Sicherheitsniveaus. Einige Beispiele veranschaulichen die Anwendung.

v DÉFINITIONS

Défaillance	Failure	Versagen	Performance inadéquate vis-à-vis d'un état limite, par exemple la sécurité structurale ou l'aptitude au service.
Performance	Performance	Leistungsfähig- keit	L'aptitude d'une structure de satisfaire aux exigences.
Fiabilité	Reliability	Zuverlässigkeit	La probabilité que la performance d'une structure satisfasse aux exigences pendant une période donnée et avec une probabilité définie.
Fiabilité requise	Target reliability	Erforderliche Zuverlässigkeit	Le niveau de fiabilité à viser en fonction des attentes et des exigences de la société envers la sécurité publique.
Fiabilité optimale	Optimum reliability	Optimale Zuverlässigkeit	Le niveau de fiabilité obtenu par une optimisation des coûts et des bénéfices lors de la construction ou d'une intervention.
Risque	Risk	Risiko	Les conséquences attendues d'une défaillance, étant le dommage d'une défaillance multiplié par la probabilité de défaillance.
Ruine	Structural failure	Tragwerksver- sagen	Défaillance structurale, par exemple par la rupture d'un élément ou l'effondrement d'une structure.
Rupture d'élément	Element failure	Bauteilversa- gen	Ruine d'un élément, limitant ainsi la performance d'une structure.
Effondrement	Collapse	Einsturz	Ruine totale, rendant une structure inutilisable.
Situation de risque	Hazard scenario	Gefährdungsbild	Une situation (combinaison d'actions) qui pourrait provoquer une défaillance entraînant une certaine conséquence (dommage).
Catégorie de risque	Risk category	Risiko- Kategorie	La classification d'une structure selon la grandeur du risque quelle présente.
Dommage	Damage	Schaden	La conséquence d'une défaillance, exprimée par exemple en termes du nombre de morts ou du coût d'une performance inadéquate.

1 INTRODUCTION

1.1 MOTIVATION

Lors du dimensionnement et de la réalisation d'un *nouveau pont*, le niveau de sécurité n'est pas considéré explicitement, p.ex. par l'application des règles de dimensionnement des normes. L'expérience montre que le niveau de sécurité préconisé par les normes de dimensionnement, est probablement plus que suffisant. Une optimisation de la quantité de matériaux par rapport à la marge de sécurité ne se justifie pas économiquement, et par conséquent, la recherche du niveau de sécurité requis n'a jamais été de première importance.

En revanche, lors de l'évaluation d'un *pont existant*, la décision pour une intervention (rétablissement de la sécurité structurale, augmentation de la capacité portante des éléments structuraux) est motivée par une vérification non satisfaite de la sécurité structurale d'un ou de plusieurs éléments porteurs d'un pont. De plus, la frontière entre une intervention lourde ou légère semble peu connue. Par exemple, une intervention légère (épaississement d'un tablier) pourrait induire un renforcement lourd de la structure porteuse primaire. Dans ce cas, par une étude plus approfondie de la sécurité structurale on pourrait démontrer qu'il est possible de limiter, voire même éviter, les interventions lourdes.

En conséquence, il y a un besoin de mieux connaître le niveau de sécurité requis pour les ponts. De plus, comme les éléments porteurs d'une structure sont vérifiés de manière indépendante, il est avantageux d'analyser la fiabilité globale d'une structure à l'aide d'une approche « système ». La notion du temps doit également être intégrée pour tenir compte de la réduction de la résistance des sections due aux effets tels que la corrosion et la fatigue.

Dans un cadre plus complet, la fiabilité adéquate est fortement liée à une optimisation en terme de rapport entre le coût et le bénéfice d'une (non-)intervention. En plus, les aspects de la sécurité structurale doivent être complétés en considérant aussi la performance d'un pont au niveau de l'aptitude au service et de la durabilité. En conséquence, une approche complète est nécessaire pour déterminer l'intervention optimale pour un pont existant.

1.2 BUTS ET LIMITES DE LA RECHERCHE

L'idée de base de l'étude consiste à définir une fiabilité cible comme étant une fonction du risque associé à des défaillances de ponts, plutôt que de considérer le niveau de sécurité imposé par les normes de construction. L'étude se concentre sur une analyse du risque associé aux défaillances de ponts et aux risques acceptés par le public lors d'activités quotidiennes. Ces risques sont ensuite utilisés pour définir un niveau de risque acceptable pour l'évaluation des ponts-routes existants.

La motivation de l'étude est de rationaliser l'évaluation des ponts existants dans le but d'éviter des interventions sur des structures qui ont déjà une sécurité suffisante. Ceci est le danger lorsque les normes de construction ou les niveaux de sécurité des nouvelles constructions sont appliqués tel-quels à l'évaluation des ponts existants.

1.3 DÉMARCHE

La recherche englobe les trois étapes suivantes :

- une étude des défaillances de ponts
- une étude du niveau de sécurité lié à d'autres activités
- le développement d'une méthodologie pour la définition du niveau de sécurité requis en fonction d'une situation de risque

La sécurité minimale exigée par la société par rapport à la sécurité publique doit être cernée. Elle est un critère important, par la suite, pour déterminer l'intervention minimale ou pour justifier la non-intervention. L'étude comprend une comparaison de la fiabilité des ponts-routes au niveau mondial avec celle liée aux différents moyens de transport et à d'autres domaines d'activité. Le but de l'étude est de justifier un risque minimal.

Plutôt que d'appliquer un niveau uniforme de sécurité requis pour tous les ponts et scénarios de risque dans la phase finale, une méthodologie a été développée pour la définition du niveau de sécurité requis en fonction d'une situation de risque. Cette approche nécessite les étapes suivantes :

- identification des situations de risque prédominantes.
- définition des conséquences d'une situation de risque donné en termes de dommage et de l'importance économique du pont.
- sélection d'un niveau de sécurité requis comme étant une fonction de l'ampleur de ces conséquences.

Le niveau de sécurité requis est ainsi défini comme une fonction de paramètres « externes » représentant la valeur et l'importance d'une structure. Ce niveau de sécurité requis est ensuite comparé à la sécurité estimée, calculée en utilisant des paramètre « internes » décrivant l'état du pont. Les méthodes pour le calcul de la sécurité des ponts sont également brièvement présentées dans le rapport, faisant référence à d'autres sources et de conseils sur le sujet.

2 ÉTAT DES CONNAISSANCES

2.1 INTRODUCTION

Cette partie de la recherche a pour but l'établissement d'un inventaire des connaissances actuelles dans le domaine de la fiabilité cible lors de l'évaluation des ponts-routes existants. Les enseignements à tirer de cette étude bibliographique sont présentés de la façon suivante :

Section 2.2 Recherches bibliographiques

Commentaire concernant les publications les plus intéressantes avec comme thème l'évaluation des ponts, du risque, du système 'pont' et de la détérioration des structures.

• Section 2.3 Directives existant à l'étranger

Synthèse des directives utilisées pour le dimensionnement et l'évaluation des ponts.

• Section 2.4 Conclusions

Synthèse des principales conclusions de ce chapitre en examinant essentiellement l'applicabilité en Suisse des documents examinés.

2.2 RECHERCHES BIBLIOGRAPHIQUES

Nous avons étudié plus de 40 publications abordant la sécurité, la gestion et l'évaluation des ponts ainsi que l'analyse probabiliste. Un bilan des articles les plus intéressants d'Europe, d'Amérique du Nord et de l'Australie est présenté ci-après. Dans ce bilan, nous traitons les articles dans l'ordre chronologique de notre recherche (table des matières du rapport). Actuellement, le besoin de recherche se situe principalement au niveau de l'interaction entre les domaines de l'analyse de la sécurité, de la détérioration et de la gestion des ouvrages existants. Le but commun est de développer une approche intégrée utilisable pour la planification d'interventions de maintenance sur les ponts-routes existants.

2.2.1 Etude des accidents et des risques

L'effondrement d'un pont est un évènement rare. On pourrait en conclure que les ponts ont un niveau de sécurité acceptable. Une étude récente effectuée en Angleterre [Menzies, 1996].

[Schneider, 1994] a analysé 800 dégâts dans le domaine du génie civil. Il les a classé selon leurs causes et selon les mesures possibles à entreprendre. Les résultats sont très parlants et peuvent être utilisés pour dégager des mesures efficaces garantissant la sécurité des ouvrages. Selon Schneider 75% des accidents sont dus à des erreurs humaines. Il propose aussi un schéma détaillé de classification des risques.

Une vue d'ensemble des accidents dans la construction est donnée dans [Carper, 1997]. Il démontre que les principaux risques qui affectent la sécurité des structures sont les suivants : Dimensionnement inadéquat ou connaissances insuffisantes, choix inadéquat du site, erreurs lors de la construction, effondrement pendant la construction, actions extrêmes (séisme, vent, neige, feu..) et combinaisons d'actions inattendues, détérioration inattendue ou plus rapide que prévue.

Plusieurs auteurs comparent les différents risques de mort [Allen, 1972] [Thoft-Christensen, 1982] [Melchers, 1999] [Menzies, 1996] [Schneider, 1994]. La plupart de ces comparaisons se font au niveau de morts d'une certaine activité par rapport à une population en tenant compte du temps d'exposition. Ces études montrent que le risque de mourir dû à une défaillance d'un ouvrage est négligeable comparé à d'autres dangers. Plusieurs auteurs fixent les limites de risque. [Schuler, 1999] propose comme limite supérieure, le risque de mort en général avec une probabilité de 10⁻⁵.

2.2.2 Paramètres influençant la fiabilité

Le processus d'évaluation est d'une grande importance pour la maintenance des ponts. La plupart des chercheurs dans ce domaine sont d'accord sur le fait que si l'on se trouve face à des incertitudes, la prise de décision peut être facilitée par une vérification des structures basée sur le risque. Les difficultés résident dans la modélisation, les erreurs humaines et les habitudes dans les bureaux d'ingénieurs [Menzies, 1999].

La grande différence entre l'évaluation d'un pont existant et le dimensionnement d'un nouveau pont est la quantité de données/informations sur le pont. [Faber, 2000] donne un aperçu des méthodes basé sur la fiabilité d'évaluation d'ouvrages existants. Son résumé contient également des applications à des ouvrages réels

Si l'on obtient des données supplémentaires (mesurées) d'un ouvrage existant ou de ses composants, on peut améliorer l'estimation a priori de la fiabilité de l'ouvrage. On se trouve alors dans le domaine de la statistique Bayesienne qui utilise le théorème de Bayes [Scheiwiller, 1998][Melchers, 1999][Faber, 2000].

Les actions et les résistances étant des variables aléatoires, les approches déterministes ne tiennent pas compte de la réserve de sécurité. On trouve les méthodes pour l'évaluation de la fiabilité dans diverses publications [Stewart, 1997], [Thoft-Christensen, 1982], [Schneider, 1994], [Melchers, 1999]. Une analyse peut être faite par intégration numérique, par simulation Monte Carlo ou par des méthodes d'approximation comme les First Order et Second Order Reliability Methods (FORM/SORM) [Ditlevsen, 1996]. [Haldi, 1998] et [Stewart, 1997] rappellent les principales méthodes utilisées dans le domaine de la sûreté de fonctionnement des systèmes industriels (arbre des causes, arbre des conséquences,...).

Il n'existe que peu d'applications d'analyse probabiliste de défaillances d'ouvrages à cause de la grande sensibilité aux répartitions admises, de la difficulté de tenir compte du comportement humain et d'autres facteurs qui ont une grande influence sur le risque actuel. De plus, il subsiste encore le problème de reconnaître les risques de défaillance. Les chercheurs ont essayé de contourner ces problèmes par l'usage:

- d'un indice de fiabilité pour surmonter la sensibilité des calculs de risque aux fonctions de répartitions admises,
- de variables Bayesiennes dont les moyennes et écart-types peuvent être estimés par jugement (et ainsi on tient compte du comportement de l'homme et des simplifications lors de l'analyse structurale),
- de procédures d'étalonnage qui adaptent le niveau de sécurité des procédures existantes de dimensionnement [Bassetti, 1998]. Ainsi, il est possible d'établir des niveaux de sécurité plus uniformes. [Nowak, 1995] a établi les facteurs de charges et de résistance des nouvelles normes américaines de manière à avoir un niveau de sécurité prédéfini. L'indice de fiabilité cible a été fixé sur la base des indices de fiabilité obtenus sur des ponts dimensionnés avec les anciennes normes.

[Tabsh, 1991] propose une méthode pour calculer la fiabilité des ponts multi-poutres autoroutiers. Ce système de pont est composé d'éléments en série et en parallèle. La différence entre la charge ultime qu'on peut appliquer pour un élément (fiabilité de l'élément) et la charge ultime du système (fiabilité du système) est appelé **redondance**. La fiabilité des ponts dimensionnés selon les normes américaines varie avec la portée et les matériaux utilisés. Pour les ponts métalliques, [Tabsh, 1991] a trouvé des indices de fiabilité de l'ordre de 3 à 3.5, pour les ponts mixtes de 2.5 à 3.5 et pour les ponts en béton armé et précontraint de 3.5 à 4.

[Ghosn, 1996] démontre la différence entre la fiabilité d'un élément et la fiabilité du système des pontstypes. Les procédures de dimensionnement actuelles considèrent que le système 'pont' se trouve toujours en stade élastique, tandis que la résistance d'un élément est déterminée sur des considérations d'états limites. Cette hypothèse sous-estime les vraies capacités d'un système 'pont' et donne donc des limites inférieures pour la fiabilité. Si par exemple le moment sur appui d'un pont à deux travées atteint le moment plastique, la section subira des déformations non-élastiques et une redistribution des efforts vers les autres. L'approche de Ghosn part de l'hypothèse que l'on peut trouver une relation explicite de tous les mécanismes de ruine possibles. Les ponts sont souvent composés d'un grand nombre d'éléments de structure et il est souvent extrêmement difficile de trouver des expressions pour leur mécanismes de ruine prépondérants. On peut contourner ce problème en utilisant une technique de simulation numérique efficace (p.ex. la méthode des surfaces de réponse [Johannis, 1999]). [Ghosn, 1998] a aussi développé une méthode pour prendre en compte la redondance lors du dimensionnement et lors de l'évaluation des ponts-routes existants. Les éléments d'un pont ne sont pas indépendants, mais agissent ensemble pour former un système. La méthode pénalise les ponts avec une redondance insuffisante en appliquant des facteurs de système plus grands lors du dimensionnement traditionnel. Les états-limites analysés pour avoir une sécurité adéquate du système 'pont' sont les suivants : rupture d'un élément, état-limite ultime, état-limite de service, état-limite endommagé.

[Schneider, 1994] propose de subdiviser un système en des éléments en série et des éléments en parallèle.

La réserve due à la redondance est très grande pour les ponts multi-poutres. Après la rupture d'une des poutres, les sollicitations sont reprises par les autres. Mais ce type de pont n'est pas très fréquent en Suisse et la redondance dans le sens longitudinal n'est pas très grande.

Les techniques basées sur la fiabilité sont de bons outils pour l'évaluation d'ouvrages détériorés. Elles permettent notamment de déterminer le moment d'intervention et de minimiser ainsi les coûts de maintenance et de réparation. [Sarveswaran, 1999] utilise un modèle de détérioration empirique en prenant les valeurs mesurées sur le site pour prédire l'évolution de la détérioration des poutres en béton armé (pertes de section des armatures et décollement du béton d'enrobage).

[Ciampoli, 1998] a formulé une méthode probabiliste pour l'évaluation de la fiabilité des éléments d'un ouvrage soumis à la détérioration. Celle-ci dépend du **temps** et peut être mise à jour en cas de maintenance ou de réparation. Dans son approche il fait la différence entre la détérioration due au vieillissement (continue) et celle due aux chocs (ponctuelle). Une fois la fiabilité de chaque élément définie, on peut évaluer la fiabilité du système en entier en tenant compte de sa logique fonctionnelle et de son comportement structural.

[Enright, 1998] combine des valeurs mesurées in situ avec l'intégration numérique. Sa méthode permet de prédire la fiabilité de ponts en béton armé sous actions environnementales, comme les réactions alcalisilicats, corrosion ou le gel. C'est une approche dans laquelle les charges et la résistance dépendent du temps.

[Kunz, 1992] a établi une méthode d'évaluation de la sécurité à la fatigue des ponts en acier existants. Pour ce faire, la probabilité de défaillance est déterminée en fonction du nombre de trains prévu à l'avenir. La probabilité de rupture par fatigue d'un détail de construction peut ainsi être calculée en tenant compte de la probabilité de détection d'une fissure. Celle-ci peut être comparée à une valeur souhaitée.

2.2.3 Niveau de sécurité requis

Une stratégie de maintenance se base sur les considérations de la sécurité minimale acceptable. Si celle-ci est trop conservatrice, les ouvrages seront renforcés ou les limites des charges utiles abaissées. Par contre, si elle est trop optimiste on risque la défaillance du pont en service [Shetty, 1999]. Dans le domaine des ponts, il y a peu d'études sur le niveau de sécurité requis.

L'acceptabilité du risque d'effondrement d'un pont dépend fortement de l'importance de sa valeur immatérielle, du trafic et de la cause de défaillance. Pour une perte de vie liée à un effondrement de pont, [Menzies, 1996] propose un probabilité annuelle maximale acceptée par la société de 10^{-6} (un seul mort) ou 10^{-7} (plusieurs morts). L'acceptabilité d'un risque est liée au caractère volontaire (l'individu décide librement d'exercer une activité potentiellement dangereuse) ou involontaire (le contrôle ou la maîtrise de l'exposition au risque échappe à l'individu) du risque couru [Haldi, 1998] [Schneider, 2000].

Pour pouvoir utiliser un indice de fiabilité dans l'évaluation d'un pont, il faut spécifier un indice de **fiabilité cible** en dessus duquel on a un niveau de sécurité acceptable. Trois approches ont été poursuivies pour le déterminer [Shetty, 1999] :

- niveaux de risque acceptés par la société tirés de données historiques
- calibrage avec des normes existantes
- optimisation économique [Nowak, 1996]

L'indice de fiabilité cible doit aussi prendre en compte le type de rupture et ses conséquences. Les mêmes modèles probabilistes qu'on a utilisé pour déterminer l'indice de fiabilité cible devraient être utilisés pour comparer un indice de fiabilité d'un pont avec l'indice cible [Stewart, 1999].

Dans le Committee Draft du futur Standard [ISO/CD 13822] sont énumérés les différences fondamentales entre le dimensionnement d'un ouvrage neuf et l'évaluation des structures existantes. Il donne également des exemples d'indices de fiabilité cible. Pour cela il fait la distinction entre aptitude au service, fatigue et état-limite ultime. Les indices de fiabilité cible sont donnés en fonction des conséquences de la défaillance.

[Sertler, 1999] recommande des valeurs cibles de fiabilité selon ses définitions comprises entre 2.8 et 3.5 pour l'évaluation de ponts-rails existants. Les valeurs sont choisies en fonction du type de rupture et de l'importance d'un élément du pont du point de vue des conséquences de la rupture.

[Kunz, 1992] tient compte de la redistribution des efforts et donne des valeurs cibles _{t,I} pour l'évaluation probabiliste de la résistance à la fatigue d'un élément porteur en fonction du nombre d'éléments et de la valeur cible du système _{t,s}.

[Allen, 1991] propose d'utiliser le même concept semi-probabiliste qu'on utilise pour le dimensionnement comme pour l'évaluation d'ouvrages existants. Il devrait tenir compte de la qualité et de la quantité des inspections, des modes de défaillance potentiels et des conséquences possibles. On ajuste alors l'indice de fiabilité cible _t par des valeurs qui tiennent compte de ces paramètres.

Une approche plus rationnelle consiste à utiliser des arguments socio-économiques pour trouver les valeurs de la fiabilité cible [Melchers, 1999]. On compare alors les coûts de différents choix d'intervention possibles : pas d'intervention, renforcement de l'ouvrage ou changement d'affectation, démolition de l'ouvrage et le remplacement par un nouveau. Il est évident que les résultats de cette approche doivent être comparés avec les valeurs acceptées par la société.

Dans son livre, [Melchers, 1999] cite aussi l'approche de la CIRIA (Construction Industry Research and Information Association, London). Elle propose le calcule de la valeur cible de la probabilité de défaillance au moyen d'une formule dépendante de la durée de vie restante du pont, du nombre moyen sur ou aux environs du pont pendant cette période et d'un facteur social.

Selon [Nowak, 1996], le niveau de sécurité optimal dépend des conséquences de la défaillance et des coûts pour la sécurité. Il correspond au coût attendu minimal. L'état limite de service a un niveau plus bas de conséquences de défaillance. Pour cela des valeurs inférieures de l'indice de fiabilité cible sont choisies pour l'état de service (valeur cible = 1.0) par rapport à l'état limite ultime (valeur cible = 3.5 pour un élément, valeur cible = 5.5 pour le système).

Le problème majeur reste néanmoins l'impossibilité de connaître la qualité de l'indice de fiabilité cible. C'est seulement quand il y a défaillance qu'on sait que l'indice de fiabilité se trouvait à un niveau trop bas. La seule solution serait par conséquent l'abaissement progressif de la fiabilité d'un pont jusqu'à sa défaillance [Flaig, 1999].

2.3 DIRECTIVES EXISTANT À L'ÉTRANGER

L'idée de base des normes de dimensionnement veut que la structure résiste suffisamment aux actions qui lui sont appliquées. Le risque provient de la variabilité de ces actions et des résistances que l'on ne peut pas décrire avec précision. Pour amener le risque de défaillance à un niveau acceptable on applique des facteurs partiels aux actions et aux résistances. Les valeurs de ces facteurs sont données dans les normes. Au départ, il s'agissait de valeurs d'expérience. Par la suite, on les a progressivement abaissées en fonction des nouvelles connaissances [Allen, 1972], notamment pour garantir un certain niveau de sécurité (fiabilité cible). Aujourd'hui il existe des normes qui donnent le niveau de sécurité requis pour différents types d'ouvrages.

La norme tchèque pour la construction métallique spécifie les valeurs de l'indice de fiabilité cible en fonction de l'importance d'un bâtiment [CSN 73 140].

Le Nordic Committee on Building Regulations donne des recommandations basées sur une optimisation économique [NKB 36]. Ainsi on trouve la fiabilité cible en fonction des conséquences de la défaillance et de la **nature de la rupture** (rupture fragile ou ductile). Des niveaux de sécurité plus bas sont requis pour des ruptures ductiles parce qu'un tel mode de rupture est accompagnée par des signes annonciateurs.

La norme canadienne CAN/CSA-S6-88 : Design of Highway Bridges donne dans son chapitre sur l'évaluation des ponts existants une procédure pour déterminer les facteurs de charge et de résistance différents de ceux du reste de la norme [Buckland, 1990]. On détermine d'abord l'indice de fiabilité cible en fonction:

- du niveau d'inspection (non-inspectable, routine, critique),
- du comportement du système (influence de la rupture d'un élément sur les autres éléments),
- du comportement de l'élément (rupture fragile sans signes annonciateurs, rupture ductile avec avertissement probable).

Les facteurs de charge et les coefficients de résistance sont donnés en fonction de l'indice de fiabilité cible et du trafic sur le pont.

[Stewart, 1997] donne des exemples des valeurs cibles pour la sécurité d'ouvrages du génie civil (centrales nucléaires aux Etats-Unis et en Grande-Bretagne, industries à risque potentiel en Australie et aux Pays-Bas,...).

2.4 CONCLUSIONS

Nous avons vu, au terme de l'étude des principales références bibliographiques citées aux sections 2.2 et 2.3, qu'il n'existait pas encore de réponse définitive à la question examinée. À savoir, quel niveau de sécurité faut-il garantir lors de l'évaluation de ponts-routes existants? On discerne les tendances suivantes :

- On souhaite effectuer la vérification des structures basée sur le risque.
- On souhaite pouvoir définir la fiabilité cible en fonction de plusieurs paramètres (importance du pont, temps, conséquences d'une défaillance, ...).
- Les méthodes d'approximation comme FORM ou SORM sont efficaces et suffisamment précises pour déterminer l'indice de fiabilité .
- L'aspect économique joue un rôle non-négligeable dans la détermination du niveau de sécurité requis, représenté par l'indice de fiabilité cible t.

3 ÉTUDE DE CAS DE DÉFAILLANCES DE PONTS

3.1 INTRODUCTION

L'ingénieur civil est appelé à assurer la *sécurité* des structures et de garantir leur *fiabilité*. Afin de pouvoir remplir cette tâche, la *reconnaissance des dangers* est de toute première importance. Ensuite, l'ingénieur doit analyser et évaluer les dangers pour prendre des décisions quant aux *mesures* à prendre pour garantir la sécurité et la fiabilité exigées.

Dans ce chapitre, 138 cas de défaillances de ponts (voir annexes A1 et A2: cas de défaillances de ponts) ont été étudiés dans le but de :

- tirer des enseignements de cas réels
- identifier les causes d'accidents

Cette liste de 138 cas de défaillances n'est certes pas exhaustive, mais nous considérons que les cas analysés sont tout à fait représentatifs pour notre étude. Parmi les cas étudiés, certaines défaillances ont eu lieu sur des ponts en construction, d'autres sur des ponts en service. Notre intérêt dans cette étude consiste en une analyse des défaillances survenues sur des ponts en service. Nous avons également étudié des cas de défaillance (ou "presque accidents"), c'est-à-dire des cas où des signes annonciateurs de dangers ont été repérés lors d'inspections et les mesures adéquates prises afin que la défaillance soit évitée.

Les cas de défaillances sont ensuite répertoriés selon la classification des dangers de [Schneider, 1994] (Figure 3.1), que l'on peut décrire comme suit :

- Les *dangers acceptés* sont représentés par des risques dont l'ingénieur avait conscience (séisme, déraillement d'un train,...), mais ce danger a été considéré comme étant admissible sur la base d'une évaluation de risque.
- Les dangers résiduels sont dus à des dangers inconnus ou non repérés comme par exemple l'endommagement dû à la fatigue, des effets dynamiques ou de résonance qui étaient inconnus à l'époque de la construction de l'ouvrage. Ces dangers résiduels peuvent également être dus à des dangers négligés qui sont par exemple une mauvaise conception, un manque de surveillance durant l'utilisation, une négligence face à une augmentation importante des charges de trafic ou face à une zone à risque par rapport à des événements naturels (affouillement, séisme, vent,...).

On peut également se trouver devant des dangers repérés et considérés, mais pour lesquels les mesures prises sont inadaptées ou défectueuses. On parle là d'erreurs de dimensionnement, de défauts de conception ou de sous-évaluations de certains risques (flambage, voilement, phases de construction délicates,...).

[Schneider, 1994] donne la classification suivante des dangers (figure 3.1) : Les dangers peuvent être *acceptés* ou alors évités ou diminués par des *mesures* engendrant de la sécurité. Des mesures non-adaptées ou une application fautive de mesures engendrent des *dangers résiduels*. La manière dont cette figure est appliquée à l'analyse des accidents est détaillée dans le chapitre 3.2.

Ces différents cas de défaillances de ponts sont ensuite répertoriés selon leurs causes techniques. Ces causes, qui sont de différentes natures (affouillement, séisme, choc, charge excessive, corrosion, fatigue, instabilité, effets dynamiques, erreur de dimensionnement ou de conception) peuvent se résumer en deux actions principales : En premier lieu, les actions de *l'environnement naturel* agissant sur les ponts et en deuxième lieu les *manipulations humaines erronées* auxquelles les ponts sont exposés dans toutes les phases de l'utilisation. Ces erreurs humaines sont dues d'une part à l'ingénieur qui a agi avec négligence ou inefficacité et d'autre part à l'utilisateur dont les actions n'ont pas respecté l'utilisation prévue du pont.

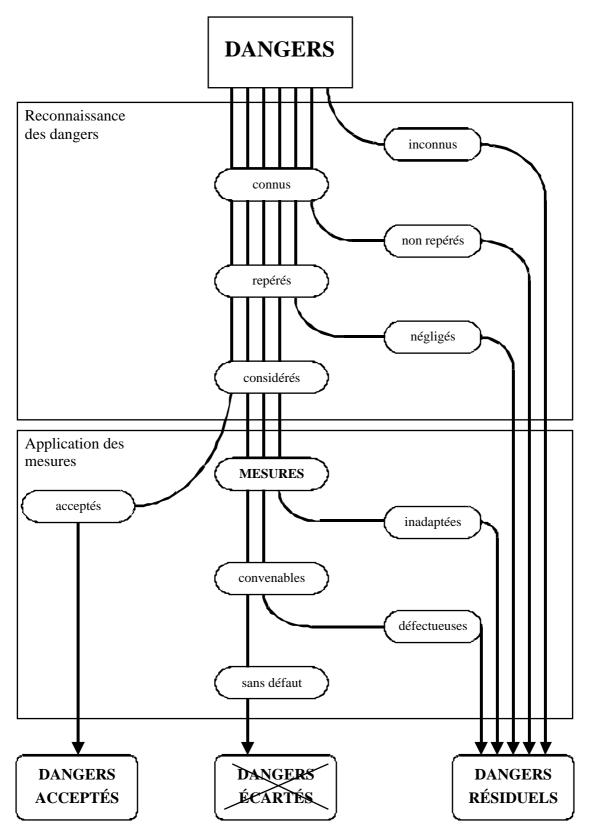


Figure 3.1 - Classification des dangers [Schneider, 1994]

3.2 CAS D'EFFONDREMENTS DE PONTS

3.2.1 Effondrements de ponts en construction

Les effondrements survenant sur des ponts en construction représentent à eux seuls 40 % des cas d'effondrements de ponts. En effet, c'est lors de manœuvres de poussage ou à cause d'un système d'étayage insuffisant que les risques d'instabilité et de rupture sont les plus fréquents. Nous avons connu en Suisse deux effondrements de ponts en construction ces dernières années : Le pont d'Illarsaz sur le Rhône en Valais en 1973, sur lequel des poutres maîtresses en acier se sont rompues lors du poussage du tablier en béton, ainsi que le pont de Valangin sur la Sorge dans le canton de Neuchâtel également en 1973, où le poussage s'effectuait dans le sens d'une pente de plus de 6 %. Ces deux effondrements n'ont heureusement causé aucune perte de vie, mais des dégâts de grande importance.

3.2.2 Dommages

Les dommages sont des cas où les dangers sont repérés par des signes annonciateurs lors d'inspections à la suite de quoi, des mesures adéquates sont prises pour éviter la ruine. Mais comme pour les effondrements de ponts en service, des négligences et des erreurs avaient été commises lors de la conception et/ou lors de la construction de ces ponts. Plusieurs de ces cas de dommage ont été répertoriés [PIARC, C11 – Committee on Road Bridges, 1999], notamment en Suisse où ce sont surtout des problèmes de corrosion des armatures et des câbles de précontrainte qui ont été décelés. Cette corrosion est dans la plupart des cas causée par la présence d'eau contaminée par les sels de déverglaçage qui se fraye un chemin à l'intérieur des ponts.

La protection idéale contre la corrosion n'ayant pas encore été découverte, ceci soulève l'importance d'une surveillance régulière et d'un entretien des ponts existants.

3.2.3 Effondrements de ponts en service

Dans le cas des effondrements survenant sur des ponts en service, on constate qu'une grande part de ces effondrements est due à des mesures inadaptées. Ceci soulève l'implication de l'ingénieur qui a, dans plus du 95 % des cas, une lourde responsabilité dans la effondrement des ponts (figure 3.2).

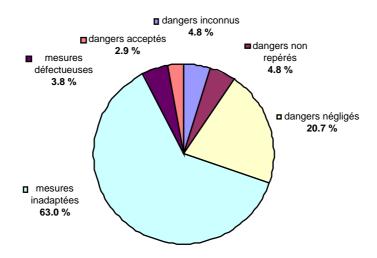


Figure 3.2 - Dangers et mesures sur des ponts en service

3.2.4 Causes techniques des effondrements de ponts en service

Parmi les effondrements de ponts en service, il est intéressant de faire une répartition selon les causes techniques des effondrements que l'on peut répertorier comme indiqué à la figure 3.3. Ces différentes causes sont également divisées selon la répartition de [Schneider, 1994], où l'on constate, dans pratiquement tous les cas, que des mesures inadaptées avaient été prises. On retrouve donc dans cette figure la grande part de responsabilité de l'ingénieur dans les cas de effondrements de ponts en service.

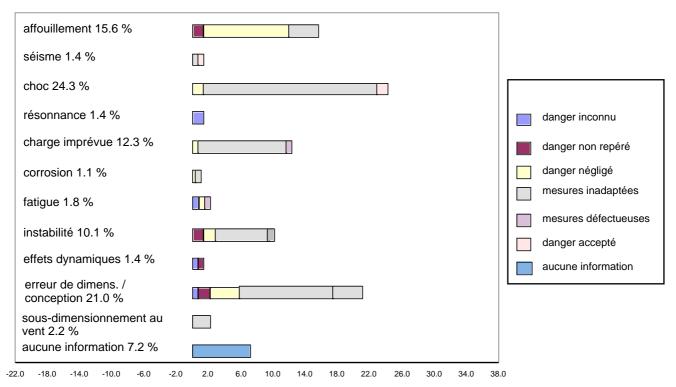


Figure 3.3 - Causes techniques des effondrements de ponts en service

Il est essentiel d'exp liquer que si la part des effondrements de ponts attribuée au séisme est aussi faible (1.4 %), ceci est dû au fait que lors de catastrophes naturelles telles qu'un tremblement de terre, on décrit en général la globalité des dégâts matériels dans une ville ou une région, sans que les dégâts ou effondrements attribués aux seuls ponts soient décrits singulièrement. Mais, il est clair que les effondrements dues aux séismes représentent une part beaucoup plus importante que représentée ci-dessus.

Quant aux effondrements attribuées aux problèmes de corrosion, celles-ci se limitent la plupart du temps, à une défaillance décelée à temps et pour laquelle des mesures de remise en état ou de remplacement des armatures et des câbles de précontrainte sont effectués suffisamment tôt pour empêcher l'effondrement. Quand bien même l'effondrement est effectivement causée par la corrosion, celle-ci n'est souvent pas forcément reconnue, puisqu'elle devient l'élément déclencheur, mais souvent indécelable lors de l'effondrement.

Parmi les causes techniques décrites plus haut, on peut effectuer un groupement de ces dernières en trois catégories (figure 3.4) englobant d'une part les expositions des ponts à des *manipulations humaines erronées* dans toutes les phases de l'utilisation des ponts. Ces manipulations sont par exemple, une utilisation incontrôlée par rapport aux prévisions, une exploitation incorrecte ou une utilisation erronée, des explosions, une exécution incontrôlée par rapport au processus de construction projeté, des mesures inadaptées ou défectueuses de la part de l'ingénieur lors de la conception, du dimensionnement ou de la construction. Cette catégorie représente une large majorité parmi les causes d'effondrements de ponts en service puisqu'elle atteint 72 % des cas.

Une deuxième catégorie englobe les actions de *l'environnement naturel* agissant sur les ponts, par exemple l'eau, la neige, la glace, le vent, les séisme,.... Il est à souligner que ces actions, bien que naturelles,

n'enlèvent aucune responsabilité à l'ingénieur qui se doit de repérer ces dangers et de prendre des mesures adéquates pour empêcher tous risque d'effondrement. Ces actions naturelles représentent 19.4 % des effondrements de ponts en service.

A ces catégories s'ajoutent évidemment une dizaine de pourcentage de cas où aucune information suffisante n'était à disposition pour définir la cause de l'effondrement.

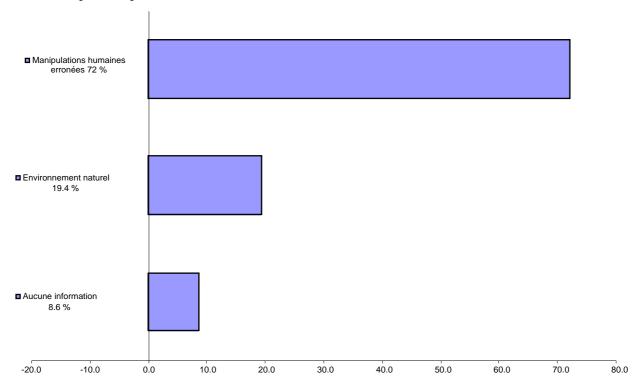


Figure 3.4 - Causes des effondrements de ponts en service

3.3 SYNTHÈSE

L'étude de cas d'effondrement de ponts permet d'identifier des caractéristiques et des informations afin d'en tirer des renseignements sur le niveau de sécurité requis et l'éventualité d'occurrence d'effondrements de ponts :

- La moitié d'effondrements de ponts sont survenues en phase de construction (40 %) ou pendant les deux premières années de service. Ceci signifie que la plupart de défauts devraient être détectés déjà en phase de projet, pendant l'exécution ou directement après la mise en service. Ceci démontre la signifiance de contrôles pour éviter des défauts, pendant la phase de projet et la construction. Une réception consciencieuse du pont avant sa mise en service assorti d'une surveillance intensifiée en phase initiale de service du pont, est un moyen judicieux pour réduire sa probabilité d'effondrement.
- Les effondrements provoquées par la corrosion et la fatigue surviennent logiquement à un âge déjà avancé des ponts. Ceci démontre l'importance d'une surveillance et d'un entretien adéquats.
- Les accidents dus à des causes naturelles telles que le séisme, le vent ou l'affouillement touchent en général les anciens ponts, pour lesquels les dangers avaient été acceptés, non repérés ou considérés en prenant des mesures inadaptées par manque de connaissances, prises à l'époque ou plus tard. Par conséquent, l'amélioration de la sécurité du parc de ponts passe par l'identification et la vérification de manière systématique des ponts, avec des défauts de conception et de dimensionnement, issus de la connaissance insuffisante à l'époque de leur construction.

- La plupart des effondrements de ponts (75%) sont dus à des erreurs humaines de l'ingénieur ou à une utilisation inapproprié ou imprévue de l'utilisateur. Parmi les erreurs humaines, on peut citer: l'ignorance, l'insouciance, la négligence, des connaissances imparfaites, la sous-estimation d'effets, des oublis ou des problèmes de flux d'informations [Schneider 1994]. Ceci nous amène à conclure que très clairement, la réduction du nombre d'accidents défie avant tout le facteur humain!
- Les dangers acceptés et objectivement inconnus ne représentent que 8 % des cas d'effondrement.
- Aucun effondrement n'est conséquence d'une mesure inadaptée non couverte par la norme. Ceci amène à constater que le niveau de sécurité préconisé par les normes est suffisamment élevé.

Ces caractéristiques de défaillances de ponts permettent de conclure qu'une sécurité plus élevée et inhérente, existe pour les ponts qui répondent aux conditions suivantes :

- Le pont est conçu, dimensionné et exécuté en respectant les connaissances actuelles, et des mesures ont été respectées pour défier le facteur humain.
- Le pont a montré un comportement normal pendant les premières années de service.
- Le pont est suivi par une surveillance et un entretien adéquats.

Dans ce cas, il est justifié d'adapter le niveau de sécurité requis pour une situation de risque donnée pour un pont existant. Ce niveau de sécurité spécifique peut être quantitativement plus bas que celui implicitement donné dans les normes pour la construction de nouveaux ponts. Une méthodologie pour déterminer le niveau de sécurité requis et spécifique est proposée dans les chapitres suivants.

4 RISQUES DANS LA SOCIÉTÉ

4.1 INTRODUCTION

Dans ce chapitre, nous abordons les différents risques auxquels sont confrontés l'homme, ainsi que la manière dont ils sont perçus et acceptés. Nous commençons par une étude générale, puis nous tenterons d'en dégager des valeurs applicables au génie civil et plus particulièrement aux ponts-routes.

4.2 ÉTUDES STATISTIQUES

Le risque est inséparablement lié à la vie. Il peut être dû à des causes naturelles ou à des conséquences d'activités humaines. Ces dernières peuvent également exposer des personnes tierces à des dangers, indépendamment de leur volonté. De manière générale, on peut affirmer que **le risque nul n'existe pas**.

Notons qu'il n'est pas évident de comparer les risques. Il faut d'abord s'entendre sur la manière de calculer les probabilités d'occurrence et les conséquences d'un événement risqué, ainsi que sur les façons d'envisager l'exposition au risque. Pour les conséquences, nous nous intéresserons dans ce qui suit aux **causes de décès**.

Dans la littérature, on a accès à de nombreuses statistiques. Par exemple, le tableau 4.1, basé sur une étude de l'American Nuclear Society de 1978, donne les probabilités estimées des catastrophes les plus meurtrières réellement survenues, ainsi que leur conséquences.

Nature de la catastrophe	Probabilité estimée [par année]	Nombre estimé de décès (borne sup.)
Tremblement de terre	10 ⁻³ à 10 ⁻⁴	100'000 à 1'000'000
Inondation	10-2	200'000 à 1'000'000
Raz de marée, hurricane	10 ⁻² à 10 ⁻³	50'000 à 500
Tornades	$10^{-2} \text{à} 10^{-3}$	1'000 à 10'000

Tableau 4.1 - Catastrophes envisageables d'après une étude de l'Amercian Nucl. Soc., 1978 [Haldi, 1998]

Si l'on s'intéresse maintenant aux risques individuels, à l'aide du mémento statistique de la Suisse 1999 délivré par l'Office fédéral de la statistique (OFS), nous pouvons comparer différentes causes de décès en Suisse.

Population en Suisse (1997): 7'096'500 personnes

Décès en Suisse (1997) : 62'839 personnes. (0.89% de la population)

Nature du décès	Nombre de décès	Probabilité individuelle [décès/hab·an]
Maladies infectieuses	905	1.3·10 ⁻⁴
Tumeurs	15'047	2.1·10 ⁻³
Maladies de l'appareil circulatoire	25'755	3.6·10 ⁻³
Accidents	2'064	2.9·10 ⁻⁴
Suicides	1'431	2.0·10 ⁻⁴
Autres	17'637	2.5·10 ⁻³
Total	62'839	8.9·10 ⁻³

Tableau 4.2 - Causes de décès en Suisse en 1996

Pour information, par rapport à ces valeurs, une probabilité de 10⁻⁶ correspondrait à 0.011% des décès, soit 7 personnes trouvant la mort chaque année.

Plus détaillé et basé sur un plus grand échantillon (env. 200 millions de personnes), toutefois un peu ancien, le tableau 4.3 présente le détail des causes de décès dus aux accidents dans la population américaine en 1969.

Nature de l'accident	Nombre de décès	Probabilité individuelle [décès/hab·an]
Véhicules	55'791	3·10 ⁻⁴
Incendies	7'451	4·10 ⁻⁵
Noyades	6'181	3·10 ⁻⁵
Empoisonnements	4'516	2·10 ⁻⁵
Armes à feu	2'309	1.10-5
Machines (1968)	2'054	1.10-5
Transports sur eau	1'743	9·10 ⁻⁶
Voyages aériens	1'778	9·10 ⁻⁶
Chutes d'objets	1'271	6·10 ⁻⁶
Électrocutions	1'148	6·10 ⁻⁶
Chemins de fer	884	4·10 ⁻⁶
Foudre	160	5·10 ⁻⁷
Tornades (moyenne 1953-1971)	118	4·10 ⁻⁷
Hurricanes (moyenne 1901-1972)	90	4·10 ⁻⁷
Divers	8'695	4·10 ⁻⁵
Total	Env. 115'000	6·10 ⁻⁴

Tableau 4.3 - Causes de décès par accidents aux USA en 1969 [Haldi, 1998]

Il est souvent plus significatif de calculer les risques par heure d'exposition et par personne exposée. C'est le cas lorsque les risques sont liés à une activité particulière et que seul un groupe précis de la population est concerné. On peut alors parler de **taux de décès**.

Le tableau 4.4, tiré de [Melchers, 1999], présente l'approximation de tels risques liés à des activités particulières. On constate une différence d'environ un facteur 10 entre les risques « volontaires » et les risques « involontaires ». Le risque dépend également du degré d'exposition.

Activité	Taux de décès	Exposition typique estimée	Probabilité individuelle pour une personne exposée
	[décès/h. d'exposition]	[h/an]	[décès/hab·an]
Alpinisme	3-4·10 ⁻⁵	50	$1.5 - 2 \cdot 10^{-3}$
Nautisme	1.5·10 ⁻⁶	80	$1.2 \cdot 10^{-4}$
Natation	3.5·10 ⁻⁶	50	1.7·10 ⁻⁴
Cigarette	2.5·10 ⁻⁶	400	1.10^{-3}
Transport aérien	1.2·10 ⁻⁶	20	$2.4 \cdot 10^{-5}$
Transport automobile	7.10^{-7}	300	2.10-4
Transport ferroviaire	8.10-8	200	1.5·10 ⁻⁵
Travaux de construction	7-20·10 ⁻⁸	2200	1.5-4.4·10 ⁻⁴
Travail d'usine	2·10 ⁻⁸	2000	4.10^{-5}
Incendies*	1-3·10 ⁻⁹	8000	8-24·10 ⁻⁶
Effondrements de structures*	2·10 ⁻¹¹	6000	1.10-7

^{*}exposition estimée pour une personne moyenne

Tableau 4.4 - Risques liés à des activités particulières [Melchers, 1999]

Ce tableau montre bien l'importance du choix de l'unité de référence. Par exemple, l'avion est généralement considéré comme étant plus sûr que la voiture. Ceci est vrai si l'on compare les risques annuels d'une personne moyenne, mais faux si l'on considère le taux de décès par heure d'exposition. Il convient donc de bien choisir la convention de grandeur de référence, en fonction du contexte.

Il existe également d'autres approches d'évaluation des risques, comme par exemple le FAR (Fatal Accident Rate) développé en Grande-Bretagne pour les activités professionnelles. Celui-ci se définit comme le nombre moyen de décès par accidents enregistrés en 10⁸ heures d'exposition à une activité particulière (soit 1000 travailleurs à raison de 2500 heures annuelles pendant 40 ans).

4.3 PERCEPTION DU RISQUE

L'analyse de la perception du risque par les individus est un domaine qui a encore été peu étudié. On sait par exemple que l'être humain est plus impressionné par les grandes catastrophes que par des accidents moins spectaculaires mais plus fréquents, même à risque (probabilité · dommage) égal.

Parmi les facteurs influençant la perception des risques, on peut citer :

- le contrôle qui peut être exercé sur le déroulement de l'accident considéré
- l'ampleur de l'accident (à laquelle on donne plus d'importance qu'à la fréquence)
- la gravité des atteintes aux personnes
- le côté spectaculaire des conséquences de l'accident
- la publicité entourant le risque en question

- le caractère de nouveauté du risque (non familier)
- la minimisation des risques futurs éloignés dans le temps
- la difficulté de réviser ses jugements pour intégrer de nouvelles données
- le caractère souvent erroné des évaluations intuitives (tendance à surestimer la fiabilité résultant d'un petit nombre d'observations)
- attitudes systématiquement critiques ou hostiles de certains groupes de personnes envers certains organismes ou institutions

La perception des risques peut encore varier en fonction de la profession, du niveau de formation, du statut social, du sexe et de l'appartenance culturelle des individus.

4.4 ACCEPTATION DU RISQUE

L'acceptation du risque par les individus et la société est influencée par de nombreux facteurs (voir tableau 4.5), le plus important étant le caractère volontaire ou involontaire du risque encouru.

POSITIF	NÉGATIF
Assumé volontairement	Subi involontairement
Effets immédiats	Effets différés
Absence d'alternatives	Existence d'alternatives
Danger connu	Danger inconnu
Lié à une activité essentielle	Lié à une activité accessoire
Concerne des groupes particuliers	Concerne chacun
Bon usage	Mauvais usage
Conséquences réversibles	Conséquences irréversibles

Tableau 4.5 - Facteurs susceptibles d'affecter l'acceptation du risque [Starr, 1976]

D'après une étude réalisée par [Otway 1970], on peut schématiquement quantifier la tolérance de la population vis-à-vis des risques individuels annuels de la manière suivante :

Probabilité individuelle [décès/hab·an]	Opinion caractéristique	
10 ⁻³	Ce niveau de risque est inacceptable ; dès qu'un risque approche ce niveau, des mesures sont immédiatement prises pour le réduire, ou alors l'activité en question est abandonnée.	
10-4	La société engage des moyens (souvent publics) pour mettre en place des dispositifs permettant de réduire ce risque (p. ex. lois)	
10 ⁻⁵	Les risques de cet ordre (p. ex. incendie, noyade, empoisonnement) ne conduisent plus qu'à des mises en garde (autorités vis-à-vis des citoyens, parents vis-à-vis des enfants)	
10 ⁻⁶	Les risques de ce niveau n'inquiètent en principe pas l'individu moyen, qui a conscience de leur existence mais ne se sent pas vraiment concerné. Il se montre résigné face à de tels risques qui rejoignent ceux liés aux éléments naturels (p. ex. foudre, inondations, tremblements de terre)	

Tableau 4.6 - Indication de la tolérance des risques [Otway et al., 1970]

4.5 RISQUES POUR LES PONTS-ROUTES

Du chapitre qui précède, nous allons essayer d'attribuer des valeurs de probabilité individuelle de trouver la mort sur un pont-route par comparaison avec d'autres domaines. Nous établirons deux bornes : inférieure et supérieure. La valeur de la fiabilité-cible pour l'évaluation d'un pont-route existant sera basée sur une probabilité individuelle de trouver la mort comprise entre ces deux bornes, selon la démarche décrite en détail dans le chapitre 5.

4.5.1 Probabilité individuelle de trouver la mort sur un pont-route : Limite inférieure

Le risque qu'un individu trouve la mort sur un pont-route avec une probabilité de 10⁻⁶ [décès/hab·an] peut être considéré comme une *limite inférieure*. Les risques de ce niveau n'inquiètent en principe pas l'individu moyen, qui a conscience de leur existence mais ne se sent pas vraiment concerné. Il se montre résigné face à de tels risques qui rejoignent ceux liés aux éléments naturels. À titre de comparaison, la probabilité annuelle qu'un individu soit tué par la foudre est de 5·10⁻⁶. Cette valeur de 10⁻⁶ a déjà été proposée par d'autres auteurs, tels que [Menzies, 1996].

4.5.2 Probabilité individuelle de trouver la mort sur un pont-route : Limite supérieure

Nous considérons que le risque qu'un individu trouve la mort sur un pont-route ne devrait pas dépasser celui de trouver la mort dans un accident de voiture. Nous prendrons donc comme *limite supérieure* la probabilité individuelle correspondante de 3·10⁻⁴ [décès/hab·an]. A noter que pour les valeurs de cet ordre, la société engage généralement des moyens (tels que des lois) pour contenir ou diminuer les risques.

5 PARAMÈTRES INFLUENÇANT LA FIABILITÉ

5.1 INTRODUCTION

Le but de l'étude n'est pas de réduire globalement le niveau de sécurité du parc de ponts, mais plutôt de cibler un niveau uniforme du risque acceptable.

L'approche proposée dans ce rapport est de définir, de manière réfléchie, un niveau de sécurité requis comme étant une fonction de situations de risque. Le niveau de sécurité requis est ainsi défini en fonction de paramètres « externes » représentant la valeur et l'importance d'une structure. Ce niveau de sécurité requis est ensuite comparé à la sécurité estimée, qui est calculée en utilisant des paramètres « internes » décrivant l'état du pont.

5.2 PARAMÈTRES LIÉS À LA FONCTION (« EXTERNES »)

5.2.1 Description des paramètres

Les ouvrages du génie civil et en particulier les ponts sont des objets uniques. C'est pourquoi, lors d'une évaluation d'un pont existant, il faut adapter le niveau de sécurité requis aux conditions particulières du pont en question.

La fiabilité cible dépend essentiellement de trois critères majeurs :

- 1. la grandeur du dommage suite à la ruine
- 2. la valeur d'utilisation
- 3. les valeurs immatérielles

5.2.2 Grandeur des dommages suite à la ruine

Un pont étant toujours une partie d'un système de trafic, il faut tenir compte de ses caractéristiques d'utilisation pour évaluer le dommage suite à un effondrement. Les conséquences de la ruine d'un pont peuvent se chiffrer le plus facilement par le nombre de morts dus à cette ruine. Ceci dépend des valeurs intrinsèques du pont, comme le trafic, la géométrie, la situation et le mode de ruine. Concernant le trafic, il faut considérer le cas de trafic de pointe et le cas du bouchon qui donnent le nombre maximal de morts. Le nombre de personnes susceptibles de trouver la mort dans la situation de risque 'trafic de pointe' est une fonction linéaire du trafic journalier moyen (TJM) et de la longueur totale du pont. Pour la situation de risque 'bouchon', ce nombre dépend linéairement du nombre de voies de roulement et de la portée.

Si le pont se trouve dans une zone où un il y un grand rassemblement de personnes (places, zones d'habitation, proximité d'une autre route), non seulement les personnes sur le pont, mais aussi les personnes sous le pont et dans ses environs peuvent trouver la mort.

La figure 5.1 montre les paramètres influençant le nombre de morts lors d'un effondrement de pont.

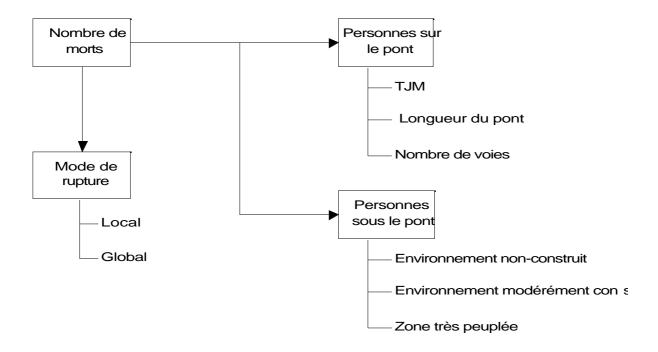


Figure 5.1 - Paramètres influençant le nombre de morts (TJM: Trafic journalier moyen)

Le nombre de morts dépend directement de la situation de risque, ainsi il comprend non seulement les personnes qui étaient sur le pont lors de l'effondrement, mais aussi tous les morts en conséquence de la ruine (p.ex. voitures circulant la nuit n'ayant pas vu que le pont s'était effondré).

Pour déterminer la probabilité de défaillance correspondant au critère 'dommage suite à ruine', un certain nombre de morts acceptable est choisi, et en fonction des paramètres l'influençant on trouve la probabilité de défaillance. Nous partons du cas le plus grave (avec un probabilité de défaillance de 10^6) et l'adaptons à notre situation de risque considérée. Tous les paramètres cités dans la figure 5.1 sont cumulatifs. La somme des morts de chaque paramètre donne le nombre total de morts.

Limites des probabilités de défaillance cible

Rappelons les limites que nous avons admises dans le chapitre 4 par comparaison avec d'autres domaines pour la probabilité individuelle de trouver la mort sur un pont-route :

limite inférieure : 10⁻⁶ [décès/hab·an]
limite supérieure : 3 10⁻⁴ [décès/hab·an]

Définition du cas le plus grave

Nous proposons les spécifications suivantes pour décrire le cas le plus grave. La ruine de la structure entière est admise car elle entraîne le nombre maximal de morts.

Probabilité de défaillance p_f : 10^{-6} morts/année

TJM : 90'000 véh/j

Longueur du pont : 1000 m

Nombre de voies : 4

Mode de rupture : Effondrement

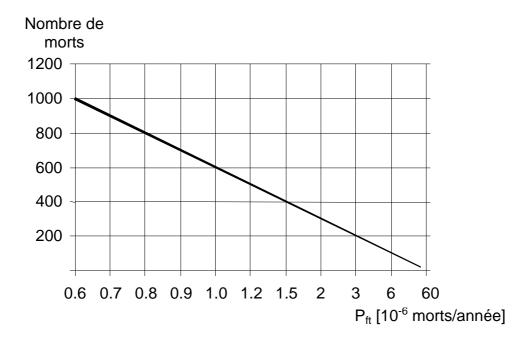
Situation du pont : Environnement modérément construit

Pour l'évaluation d'un pont précis, on adaptera la probabilité cible du cas le plus grave de manière à tenir compte des paramètres spécifiques au pont traité.

Situation du pont

La situation du pont influence le nombre de morts dû à l'effondrement du pont. Un pont moyen peut causer le même nombre de morts qu'un grand pont s'il est situé dans une zone très peuplée (traversant une route à grand trafic, traversant des endroits de rassemblements importants de personnes [places publiques, hôpitaux, écoles, centres d'achats,...]). Une zone modérément construite pourrait être celle d'un pont traversant une route à faible trafic ou une zone d'habitation. Dans les critères de classification, il en est tenu compte.

Mode de rupture


La rupture d'un élément de pont (poinçonnement d'une dalle, rupture d'une poutre d'un pont multi-poutres, rupture de porte-à-faux) a des conséquences nettement moins graves que la ruine du pont (le pont entier s'effondre suite à la rupture complète d'une section).

Probabilité de défaillance cibles

Avec les valeurs des paramètres correspondant à la situation de risque que l'on souhaite évaluer et le nombre acceptable de morts, il est possible de déterminer la probabilité de défaillance.

Avec la limite inférieure des probabilités cibles et une population en Suisse de 7·10⁶ habitants, on trouve 7 morts par année dus à une ruine de pont. Si l'on admet 10 heures d'exposition annuelle au risque de ruine de pont (en moyenne) on trouve un FAR (Fatal Accident Rate) de 10.

En tenant compte du nombre de ponts, l'exposition annuelle au risque de ruine de pont et l'hypothèse que la ruine du pont considéré comme cas le plus grave provoque 600 morts, on trouve la relation entre les probabilités cibles et le nombre de morts illustrée dans la figure 5.2.

Figure 5.2 – *Relation entre la probabilité cible et le nombre de morts (valeurs arrondies)*

Les probabilités cibles donnés dans le tableau 5.1 sont définis sur la base de la relation illustrée dans la figure 5.2. Celles-ci sont utilisés pour la définition des catégories de risques présentés dans la chapitre 6.

Nombre de morts probable	Probabilité cible
<1	10 ⁻³
1	5·10 ⁻⁴
5	10 ⁻⁴
10	5·10 ⁻⁵
50	10 ⁻⁵
100	5.10-6
500	10 ⁻⁶

Tableau 5.1 – Probabilités cibles en fonction du nombre des morts

Le nombre de voies de circulation n'a qu'une faible influence sur le nombre de morts. En effet, si l'on passe du cas le plus grave (p.ex. 6 voies) à 2 voies, on ne diminue le nombre de morts que d'un facteur trois.

De même, le mode de rupture n'influence guère la catégorie de risque. Par exemple, si l'une des 6 poutres d'un pont multi-poutres se rompt (rupture), on n'obtient que 6 fois moins de morts que pour le cas le plus grave (ruine d'un caisson). A cet effet, nous distinguons uniquement entre rupture (un élément) et ruine (défaillance structurale de l'ensemble) sans état intermédiaire.

5.2.3 Valeur d'utilisation

La valeur d'utilisation est la valeur d'un pont dans le contexte du réseau routier et de l'importance du tronçon. Elle peut être déterminée en jugeant sur la faisabilité, les coûts des mesures constructives ou d'exploitation et les coûts d'utilisateur provoqués par la ruine d'un pont. Pour ce faire, on effectuera des analyses coûts-bénéfices (optimisation économique).

L'analyse coûts-bénéfices de [Diamantidis, 2001]) optimise la fonction Z(p) :

$$Z(p) = B(p) - C(p) - D(p)$$
 (5.1)

Avec

B(p) : bénéfice dû à l'existence de la structure

C(p) : coût de construction
D(p) : coût de la ruine attendu

p : vecteur comprenant tous les paramètres contrôlant les coûts et la fiabilité

La théorie de la statistique de décision veut que les moyennes de B(p), C(p) et D(p) soient prises pour les calculs. Pour toutes les parties impliqués (l'ingénieur, le maître de l'ouvrage et l'utilisateur), Z(p) devrait être plus grand que 0. Le bénéfice et les coûts ne sont pas forcément les mêmes pour les différents parties.

Plusieurs analyses coûts-bénéfice ont été exécutées [Diamantidis, 2001]. Les conclusions peuvent être résumées dans un tableau contenant des probabilités de ruine optimales. Le tableau 6.2 (adapté de [Diamantidis, 2001]) présente la catégorie de risque CR_U en fonction des conséquences de la ruine et des coûts relatifs des mesures de sécurité. La catégorie tramée doit être considérée comme la plus usuelle (catégorie V correspond à une probabilité de ruine de 10^{-5}). Ce résultat est moins conservateur que les valeurs de fiabilité cible usuelle, mais la différence avec ces dernières n'est pas trop grande. Par exemple dans l'Eurocode, on trouve une probabilité de défaillance de $0.7 \cdot 10^{-5}$ pour une période de référence de 50 ans, ce qui correspond à une probabilité annuelle de $7 \cdot 10^{-5}$ (dépendance totale) à $1.2 \cdot 10^{-6}$ (indépendance totale).

Les probabilités cibles dans le tableau 5.2 dépendent du paramètre qui est défini comme le rapport entre les coûts de la ruine et les coûts de construction : $= C_{ruine}/C_{const}$. Les coûts de ruine contiennent les coûts pour la reconstruction du pont ou de l'élément et les coûts de perte de vie. Des exemples types pour les différentes classes sont des ponts en montagne, structures agricoles ou des mâts pour la classe des conséquences mineures ; des ponts de routes cantonales en dehors des villes, des bureaux, des bâtiments industriels et des appartements pour les conséquences modérées et des grands ponts d'autoroute, théâtres, hôpitaux et grands bâtiments pour les conséquences majeures. Pour des valeurs plus grandes que 10 et surtout si la valeur absolue de C_{rupt} est aussi grande, les conséquences doivent être considérées comme extrêmes et une analyse coûts-bénéfices complète est recommandée. Les coûts d'intervention contiennent tout ce qui est nécessaire pour éviter la ruine du pont. Pour des petits coûts d'intervention et de grands coûts des conséquences, on peut exiger une plus grande fiabilité du pont, donc une catégorie de risque plus élevée.

	Conséquences		
Coûts relatives des mesures de sécurité	Mineures < 2	Modérées 2 < < 5	Majeures 5 < < 10
Grands	10 ⁻³	5.10-4	10^{-4}
Normaux	10 ⁻⁴	10 ⁻⁵	5.10-6
Petits	10 ⁻⁵	5.10-6	10 ⁻⁶

Tableau 5.2 – Probabilités cibles correspondant au critère 'valeur d'utilisation' (adaptation du tableau de [Diamantidis, 2001])

Les valeurs données dans le tableau 5.2 s'appliquent à un système. Si l'analyse est faite au niveau d'un élément, on peut utiliser les mêmes valeurs à condition que la ruine du système soit dominée par la rupture de cet élément. En général dans ce genre de cas, les probabilités cibles vont diminuer car les coûts relatifs de la rupture pour un élément sont plus grands que pour la ruine du système. Les coûts de rupture d'un élément peuvent être bas uniquement pour les structures à grande redondance. Les catégories du tableau 5.1 sont données pour des structures ou éléments au stade de dimensionnement (et non pas au stade de construction). Les ruines dues aux erreurs humaines ou à l'ignorance et les ruines dues à des causes non liés à la structure ne sont pas couvertes par ce tableau.

Les coûts relatifs des mesures de sécurité dépendent surtout de la variabilité des charges et des résistances. La classe 'coûts normaux' est associée à une variabilité moyenne (0.1 < V < 0.3). Il est intéressant de noter que plus cette variabilité est grande (et par conséquent les coûts relatifs des mesures), plus la probabilité cible sera grande. Le Committee Draft de la norme [ISO/CD 13822] spécifie aussi des valeurs de p_t pour l'aptitude au service et la fatigue.

5.2.4 Valeurs immatérielles

En plus des critères de valeur économique, chaque ouvrage possède certaines valeurs immatérielles. Celles-ci se composent de différents aspects que nous allons étudier dans ce chapitre. Ils doivent être considérés tant du point de vue de l'état actuel que de celui du potentiel futur. A ce sujet, l'Office fédéral des routes a publié une directive sur l'appréciation de la valeur de conservation des ouvrages d'art [OFROU, 1998].

La valeur de la fiabilité-cible est la conséquence des *exigences de sécurité* uniquement, alors que les valeurs immatérielles sont évaluées par *la société*. Les valeurs immatérielles n'ont donc pas d'influence sur la fiabilité-cible. Elle interviennent plutôt dans la (re-)définition du plan d'utilisation, ou dans le choix du type d'intervention, le cas échéant.

On peut s'en convaincre par une réflexion sur la base d'un exemple fictif : Supposons que l'on ait un pont historique de valeur immatérielle importante. Si cette grande valeur immatérielle devait conduire à une augmentation de la fiabilité-cible, on pourrait alors être contraint à des interventions structurales sur l'ouvrage pour répondre aux exigence de fiabilité. Ces interventions auraient alors un impact négatif sur la conservation en état d'origine de ce pont historique, ce qui irait finalement à l'encontre du but initial. Surtout que, la non-modification de la fiabilité-cible en vertu des critères immatériels n'aurait peut-être conduit à aucune intervention !

Il est de la responsabilité de l'ingénieur de réfléchir aux valeurs immatérielles de l'ouvrage qu'il étudie, afin d'appliquer les solutions les plus adéquates lors du choix d'une intervention. Les valeurs immatérielles suivantes doivent être considérées :

5.2.4.1 Valeur historico-culturelle

La valeur historico-culturelle d'un ouvrage résulte de sa position dans le cadre du développement économique, politique ou social d'une époque. En tant que représentant d'une certaine façon de construire et témoin d'un développement technique, un ouvrage renvoie à une certaine époque culturelle : l'ère du béton armé et précontraint dans la construction du réseau des Routes Nationales dans le $2^{\text{ème}}$ tiers du $XX^{\text{ème}}$ siècle pour la plupart des ponts considérés ici.

On peut également citer la relation de l'ouvrage à un constructeur célèbre.

La valeur historico-culturelle va donc au-delà d'une valeur purement stylistique.

5.2.4.2 Valeur esthétique

La valeur esthétique d'un ouvrage est le résultat des qualités architecturale et artistique, de la composition et de la forme de la structure, des particularités du style et de la mise en place esthétique des matériaux.

L'opinion publique sur la valeur esthétique varie parfois d'une génération à l'autre.

La qualité esthétique des détails de construction peut avoir une grande influence sur l'impression générale.

5.2.4.3 Valeur technique

La valeur technique d'un ouvrage réside dans les matériaux utilisés lors de la construction et dans les caractéristiques de la construction de l'ouvrage. Pour les ponts des routes nationales, on mentionnera principalement :

- constructions et structures particulières, audacieuses, novatrices ou de caractère précurseur
- qualité et particularité des matériaux et techniques utilisés
- · caractère unique

5.2.4.4 Valeur socioculturelle

La valeur socioculturelle d'un ouvrage résulte de sa disposition à être utilisé par des groupes de personnes liés par leur profession, leur société, leur âge, leur origine ou pour des fins publiques spécifiques. Dans le cas des routes nationales, on pensera par exemple à la valeur socioculturelle pour les régions desservies par le réseau.

5.2.4.5 Valeur émotionnelle

Les valeurs émotionnelles englobent des aspects comme la valeur affective, le prestige, l'accord avec les principes personnels du constructeur, des utilisateurs ou des riverains.

Les valeurs émotionnelles peuvent être déterminantes lors de décisions. Toutes les personnes concernées ont des préférences spécifiques à l'ouvrage et des préjugés pour ou contre la conservation d'ouvrages.

5.2.4.6 Valeur de situation

La valeur de situation d'un ouvrage traduit l'interaction spatiale de celui-ci avec son environnement (délimitation d'espace, séparation de territoire, apparence marquante). Les points de repère esthétiques jouent ici un rôle secondaire.

Les ouvrages sont des points de repère. Ils marquent l'environnement, facilitent l'orientation et permettent une identification de l'endroit.

5.2.4.7 Valeur d'image

Cette valeur est quelque peu différente des autres valeurs immatérielles, en ce sens qu'elle est plus liée au maître de l'ouvrage qu'à l'ouvrage proprement dit. Par image, on entend l'opinion que peut se forger le grand public et en particulier les utilisateurs des ponts à l'égard de l'administration qui s'en occupe et de

toute la profession du génie civil. Typiquement, une ruine de pont ou, dans une moins grande mesure, des travaux de maintenance ou de réparation engendrant des nuisances seront néfastes, de même qu'un ouvrage n'inspirant pas confiance.

5.3 PARAMÈTRES LIÉS À LA STRUCTURE ("INTERNES")

5.3.1 Introduction

L'objectif de cette section est de donner une introduction aux aspects à considérer pour trouver la fiabilité réelle vis-à-vis d'une situation de risque donné. La fiabilité réelle est comparée à la fiabilité cible afin de décider si le niveau de sécurité est adéquat lors de l'évaluation probabiliste d'un pont-route existant. Dans cette section on présente un aperçu des concepts et des approches probabilistes en se référant à d'autres sources d'information. Les aspects à considérer lors d'une évaluation de la fiabilité réelle sont les suivants :

- les incertitudes liées aux variables de base
- la fiabilité des systèmes structuraux
- l'inspectabilité et la surveillance des structures

5.3.2 Incertitudes liées aux variables de base

5.3.2.1 Introduction

Un ouvrage est évalué en tenant compte de l'incertitude liée à son état, à son utilisation et à son exposition. Cette incertitude est décrite par les variables de base qui sont, par exemple, les dimensions d'une structure, les propriétés des matériaux et l'ampleur des actions.

Pour une évaluation déterministe, les variables de base sont décrites par des valeurs représentatives et des facteurs partiels. Les valeurs représentatives, les facteurs partiels et les modèles appliqués donnent des efforts conservateurs afin de tenir compte de la grande incertitude lors du dimensionnement d'un ouvrage.

Pour une évaluation probabiliste, on considère la densité de probabilité d'une variable de base, représentée, par exemple, par la moyenne et l'écart-type pour une loi de probabilité donnée. Deux valeurs sont utiles pour représenter une variable de base :

- le biais, qui est représenté par le rapport entre la moyenne et la valeur représentative.
- le coefficient de variation, qui est représenté par le rapport entre l'écart-type et la moyenne.

L'incertitude liée à une variable de base est représentée par son coefficient de variation.

5.3.2.2 Sources d'incertitude

Les sources d'incertitude sont dues à différentes causes :

- des variabilités intrinsèques, comme par exemple la densité du béton qui est difficile à diminuer et qui varie dans le temps et/ou dans l'espace.
- des erreurs d'estimation lorsque les données ne sont pas complètes, non valables ou trop générales (p.ex. action du vent sur un pont). Il arrive également que la source des données ne corresponde pas au cas en question. Pour tous ces cas, l'erreur, et donc l'incertitude, est diminuée par une augmentation des données et/ou lorsque des mesures sont prises sur site.
- une imperfection des modèles mathématiques utilisés pour représenter la réalité, comme par exemple une mauvaise distribution des effets de charge dans un pont à cause d'un manque de connaissance ou

par l'utilisation d'un modèle simplifié. Là encore, des mesures sur site diminuent l'erreur et donc l'incertitude.

- des erreurs humaines lors du dimensionnement, pendant la réalisation ou en service. Dans ce cas, l'erreur, et donc l'incertitude, sont diminuées par une assurance de qualité, des mesures sur site ou des dispositifs de protection.

Il est donc important de reconnaître les sources d'incertitude afin d'identifier les moyens de les diminuer. L'importance des différentes sources d'incertitude varie selon le type de charge.

L'incertitude liée aux charges permanentes est fonction des dimensions et de la densité des éléments d'une structure. Pour une analyse de la fiabilité, les actions permanentes peuvent être representé par une loi normale. L'incertitude liée aux charges permanentes, au moment de la conception, est donnée pour chaque source dans [Bailey 1996 et Diamantidis 2001].

Pour une analyse déterministe, on considère une valeur représentative (moyenne/nominale) et un facteur partiel. Pour une fiabilité cible, les facteurs partiels varient en fonction de l'importance de la charge permanente dans une fonction limite, ainsi que le coefficient de variation.

5.3.3 Fiabilité des systèmes structuraux

5.3.3.1 Introduction

Les ponts sont composés de plusieurs éléments et représentent donc un 'système structural'. La fiabilité d'un système structural est une fonction de la fiabilité de ses éléments pour les raisons suivantes:

- Les charges et les résistances peuvent être dépendantes (par exemple, les charges peuvent dépendre des sections et la résistance peut être fonction des charges appliquées auparavant).
- Il peut y avoir une corrélation entre les propriétés des éléments (par exemple résistance ultime et rigidité) situés à des endroits différents du pont.
- Si un élément a atteint sa résistance ultime, cela ne veut pas dire que c'est le cas pour le pont entier. Il y aura une redistribution des efforts et un autre élément viendra au secours du premier pour reprendre une partie de sa charge (=> redondance).
- Il existe des états-limites qui s'appliquent au système entier, plutôt qu'aux éléments (par exemple, tassements des fondations, flèche totale).

Même dans l'analyse déterministe conventionnelle, le système structural est simplifié. Par exemple dans une structure en treillis, les éléments sont idéalisés par leur centre de gravité, les connections sont des points et les sections critiques pour contrôler la contrainte sont des endroits prédéfinis d'un nombre restreint. La ruine d'un système structural pourrait être définie de plusieurs manières, dont:

- contrainte maximale atteinte partout
- mécanisme de rupture (plastique) formé (donc rigidité = 0)
- rigidité limite atteinte
- flèche admissible atteinte
- valeur limite d'un cumul du dommage atteinte (par exemple en fatigue)

5.3.3.2 Méthodes d'analyse de structures

L'analyse des systèmes structuraux est facilitée par une modélisation simplifiée des charges, de la séquence de mise en charge, du système statique et des caractéristiques des matériaux. Lors du dimensionnement de beaucoup de structures, les valeurs extrêmes (enveloppes) ont été obtenues par un *calcul élastique*. Les méthodes générales de recherche de la *charge ultime* s'appuient sur les deux théorèmes fondamentaux de

l'analyse limite, qui permettent de trouver des valeurs approchées de la solution lorsque toutes les conditions suivantes ne sont pas remplies [Frey, 1994]:

- la statique (équilibre)
- la cinématique (compatibilité) et
- les lois constitutives (élasto-plastique)

La méthode statique fournit une valeur inférieure de la charge ultime. Cette méthode se base sur le théorème statique de la théorie de la plasticité, qui énonce que toute charge, à laquelle correspond une distribution statiquement admissible des efforts intérieurs, est inférieure ou égale à la charge limite réelle.

Le théorème cinématique fournit une valeur supérieure de la charge ultime, trouvée pour une structure qui se transforme en un mécanisme constitué par des parties rigides et des rotules plastiques. Ces dernières peuvent se former aux endroits où les rapports sollicitations/résistance sont les plus grands. Le deuxième théorème de la théorie de la plasticité énonce que toute charge à laquelle correspond un mécanisme de rupture cinématiquement admissible, est supérieure à la charge ultime. L'application de ce principe s'avère en général très simple et élégante, mais elle surestime la charge ultime. C'est pourquoi, pour le dimensionnement, la détermination de la combinaison des charges déterminantes (situation de risque) s'obtient en général en utilisant la méthode statique de calcul à la charge ultime.

Pour *dimensionner* des structures d'après la théorie de la plasticité, on a intérêt à utiliser la méthode statique qui fournit une borne inférieure de la charge ultime, c'est-à-dire un résultat du côté de la sécurité. Pour l'*évaluation* des structures existantes on a souvent recours au théorème cinématique car il permet d'exploiter la capacité portante d'une structure à son maximum. Cependant, on peut surestimer la charge ultime.

Le tableau 5.3 résume les différentes méthodes pour la vérification d'un ouvrage. Pour l'état de service, les actions et les résistances sont calculées selon la théorie de l'élasticité. Pour l'état ultime, la résistance est établie avec la théorie de la plasticité, les efforts peuvent être déterminés soit de manière élastique, soit de manière plastique.

	Théorie de	e l'élasticité	Théorie de	la plasticité
Etat de service	S	R		
Etat ultime		S	R	
			S	R

Tableau 5.3 - Méthodes d'analyse (S: efforts, R: résistance des sections)

5.3.3.3 Systèmes structuraux redondants

A cause de sa complexité, le comportement des matériaux dans les structures est habituellement simplifié. Les structures *redondantes* (avec redistribution des efforts), comme par exemple une poutre sur trois appuis, peuvent montrer deux types de comportement selon le type de rupture (fig. 5.2). Les structures hyperstatiques sont typiquement des systèmes redondants.

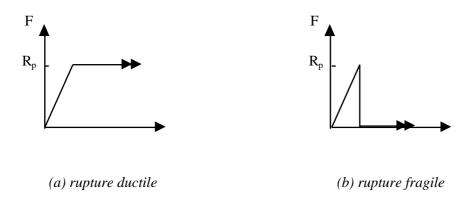


Figure 5.2 - Comportements d'un élément d'un système redondant

Pour une rupture ductile, on a un comportement élasto-plastique. Une fois la résistance plastique atteinte en un endroit, la charge n'augmente plus. Les déplacements continuent à augmenter sous charge constante. Ce comportement permet aux éléments du système de rester à la contrainte maximale en se déformant (fig. 5.2(a)). A cause de la redondance, une rupture fragile d'un élément n'entraîne pas forcément la ruine du système. Le comportement d'un élément peut être modélisé par un comportement élastique-fragile. Pour ce type de comportement, on peut trouver une déformation avec une charge zéro, même après que la charge maximale a été atteinte (fig. 5.2(b)).

Les structures *non-redondantes* (sans redistribution des efforts), comme par exemple une poutre simple, ont des comportements différents:

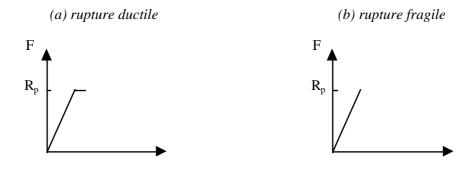


Figure 5.3 - Comportements d'un élément d'un système non-redondant

Pour une rupture ductile, on a un comportement élasto-plastique mais avec une partie rigide-plastique beaucoup plus courte. Sans redondance, les efforts ne peuvent être repris ailleurs et la structure s'effondre peu après que la résistance d'un élément a été atteinte. La rupture fragile est assez similaire: la structure s'effondre immédiatement quand la charge maximale est atteinte. Ceci est modélisé par un comportement purement élastique.

Le tableau 5.4 résume l'effondrement des différents systèmes pour une rupture fragile ou ductile d'un élément. Il démontre qu'une ruine d'un système non-redondant ne s'annonce pas. Une plus petite probabilité de ruine doit donc être imposée car on ne peut pas entreprendre des mesures pour empêcher la mort de personnes.

	Système redondant	Système non-redondant
Rupture ductile	Effondrement progressif	Effondrement quasi-instantané
Rupture fragile	Effondrement progressif	Effondrement instantané

Tableau 5.4 - Type d'effondrement d'une structure

Les considérations de ruptures fragiles ou ductiles ci-dessus doivent être utilisées de manière prudente. En fait, les comportements des éléments admis supposent un chargement contrôlé en déplacements. Si l'on impose un contrôle en force, même un élément avec un comportement élasto-plastique peut avoir une rupture soudaine (donc fragile!). De plus, dans le domaine des ponts, l'action prédominante est la charge utile (trafic). A l'état ultime, le comportement est donc contrôlé par force et par conséquent, on observe toujours une rupture fragile quand le système atteint sa charge limite. En revanche, pour pouvoir atteindre sa charge limite, une certaine ductilité est nécessaire afin de pouvoir former des rotules plastiques.

Les ponts devraient être conçus avec un niveau minimal de **redondance** pour que la rupture d'un élément ne conduise pas obligatoirement à la ruine du système entier. La redondance est définie comme la capacité du pont à résister aux charges après la rupture (ou l'endommagement) d'un élément du pont. On peut avoir rupture fragile ou ductile. Les raisons d'une telle rupture peuvent être l'application de grandes charges utiles, une perte soudaine d'un élément après rupture fragile ou un accident.

La redondance est surtout importante pour les ponts avec plusieurs poutres parallèles. Si une de ces poutres atteint la rupture, les charges vont être transférées vers les autres poutres pour autant que la construction le permette ; il y aura donc une redistribution des efforts. En Suisse, on trouve couramment des systèmes avec une grande redondance, comme par exemple les ponts multi-poutres. Cette redistribution a aussi lieu dans le sens longitudinal, quand la résistance ultime en travée est atteinte, il y a redistribution vers les appuis et vice versa. Mais cette redondance longitudinale est moins importante.

5.3.3.4 Analyse des systèmes structuraux redondants

Une fois tous les différents modes de ruine possibles identifiés, les événements (rupture des éléments ou dans une section) contribuant à cette ruine peuvent être énumérés systématiquement avec un *arbre des causes* ou un *arbre des conséquences* [Haldi, 1998][Melchers, 1999].

Pour l'arbre de causes, la procédure consiste à prendre chaque événement de ruine et à le décomposer en des sous-événements qui eux aussi sont décomposés. Les sous-événements les plus bas dans l'arbre correspondent aux ruptures des éléments ou des sections.

Le fonctionnement d'un système peut aussi être modélisé par un *diagramme de succès* [Haldi, 1998] [Schneider, 1994]. Cette analyse consiste à modéliser le système en le décomposant en blocs, représentant les éléments, des sous-systèmes ou des fonctions, et en précisant les liens qu'existent entre ces blocs. Les blocs qui représentent des composants dont la défaillance suffit à elle-seule à entraîner la défaillance du système sont connectés en série. Les blocs qui représentent des composants qui ne provoquent la défaillance du système que s'il y a défaillance simultanée de l'ensemble d'entre eux sont connectés en parallèle.

La figure 5.4 montre l'exemple du diagramme de succès d'une poutre encastrée-appuyée.

(b)

Figure 5.4 - Diagramme de succès d'une poutre encastrée-appuyée [Schneider, 1994]

Pour cet exemple, le moment plastique en A est fortement corrélé à celui en B. Pour la ruine totale du système, il faut que l'on atteigne le moment plastique en A ET le moment plastique en B (après qu'on l'a atteint en A) OU vice versa.

Le moment d'encastrement en A est de $M_A = -3/16FL$ selon un calcul élastique. Soit pour une portée L de 10 m: $M_A = -1.875F$. La condition pour que l'on atteigne le moment plastique en A est la suivante : $G_A = R - 1.875F < 0$. Avec un logiciel comme VaP et en connaissant les paramètres statistiques de la résistance et de la charge, on peut calculer la probabilité de ruine p_{fA} de l'élément $A : p_{fA} = P$ ($G_A < 0$). Quant au système, il se rompt seulement quand l'élément B atteint aussi sa résistance plastique (après que A l'a déjà atteinte). Les éléments A et B sont donc "branchés" en parallèle (cf. partie droite de la figure 5.4b). Il faut déterminer la probabilité conditionnelle $p_{fB|A}$. Avec $M_A = -R$, le moment de flexion en B vaut $M_{B|A} = FL/4-R/2$. La condition de ruine correspondante est $G_{B|A} = R$ - FL/4 + R/2 < 0. On en tire la probabilité de rupture de l'élément B, sachant qu'on a déjà atteint la résistance en A, $p_{fB|A}$. La probabilité de défaillance d'un système composé d'éléments en parallèle n'est pas plus grande que la probabilité de rupture de l'élément le plus fiable. Donc si p_{fA} est plus grand que $p_{fB|A}$, la probabilité de défaillance du chemin A (partie gauche de la fig. 5.4b, ruine commençant par l'élément A) est donc $p_f(A)$ [$p_{fB|A}$. Le chemin A est l'un des deux chemins possibles. Pour le chemin B (partie droite de la fig. 5.7b) on atteint le moment plastique d'abord pour l'élément B et ensuite pour l'élément A. La probabilité de défaillance du système entier se déduit des deux chemins A et B en série, c'est donc la somme de $p_f(A)$ et $p_f(B)$.

Pour l'exemple précédent, on a admis que l'élément qui a fait rupture reste actif, c'est à dire qu'il continue à supporter le moment plastique. Pour une rupture fragile (instantanée) ceci n'est plus possible. Dans ce cas la résistance de l'élément considéré sera ramenée à zéro (cf. fig 5.2b)). Le système statique est considérablement changé et on aura $M_{\rm B|A} = {\rm FL/4}$. Les probabilités de défaillance sont donc beaucoup plus grandes que pour le cas du comportement ductile (par déformation).

5.3.3.5 Méthodes d'analyse probabiliste

Quand on calcule la fiabilité, on tient compte de la variabilité des actions et résistances. Les logiciels utilisés (comme par exemple VaP [VaP, 1996]) permettent d'introduire les paramètres (charges, limites élastiques, géométries,...) sous forme de répartition statistique (biais, C.O.V). Il est également possible d'introduire les effets du temps (corrosion, fatigue) en diminuant les valeurs de résistance avec le temps. Plusieurs modèles de détérioration sont donnés dans la littérature ([Ciampoli, 1998] [Roelfstra, 1999] [Kunz, 1992],...).

Malheureusement, il n'est pas toujours possible de décrire la fonction limite G(x) par une ou plusieurs équations d'équilibres limites explicites. Ceci signifie qu'elle ne peut être définie que par tâtonnements par exemple avec une analyse numérique répétée avec différentes valeurs de départ. Ces valeurs peuvent être aléatoires, comme dans une analyse Monte Carlo, ou dans un ordre spécifique. En tout cas, il est clair que les méthodes comme FOSM ne peuvent être appliquées directement, car elles requièrent une forme explicite, de préférence dérivable, pour la fonction limite. Une telle forme peut être créée artificiellement en utilisant une fonction polynomiale ou autre adaptée aux résultats obtenus d'un nombre restreint d'analyses numériques discrètes. Ces 'surfaces de réponse' approchent les réponses de la structure dans les environs du point de dimensionnement, avec une plus mauvaise correspondance ailleurs. Si cette surface de réponse approche bien la réponse du système, on peut s'attendre à une bonne estimation de la fiabilité.

Les modes de rupture d'une structure ne sont pas toujours connus. Ils peuvent être établis par des méthodes comme les simulations Monte-Carlo. Les modes de rupture qui ont la plus grande influence sur la probabilité de ruine du système sont d'un intérêt particulier. Les cas de charges déterminants doivent être sélectionnés. Pour les systèmes complexes avec de multiples charges, il est possible que les états-limites critiques soient différents selon la séquence de mise en charge. Pour résoudre ces systèmes, il n'existe pas encore de méthode connue à ce jour.

5.3.4 Surveillance

Il est important de noter que la probabilité de défaillance d'un élément de structure p_f peut être exprimée comme suit :

$$p_f = p_{ruine} \left(1 - p_{dét} \right) < p_t \tag{5.2}$$

avec:

 p_{ruine} : probabilité de ruine calculée

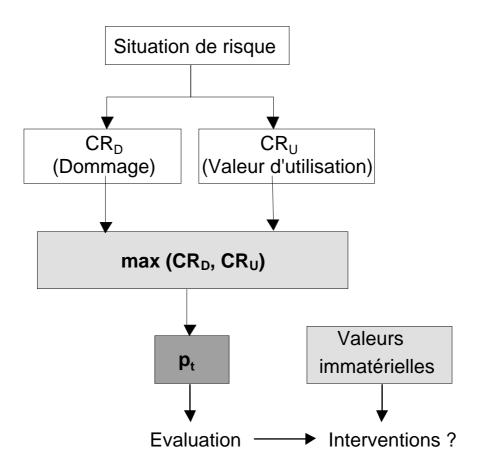
 $p_{\mathit{dét}}$: probabilité de détection d'une action imprévue ou d'un endommagement réduisant la

résistance de l'élément de structure

 p_t : valeur limite (acceptable) de la probabilité de ruine

L'équation (5.2) démontre que la probabilité de défaillance peut être diminuée en augmentant la surveillance et donc la probabilité de détection d'une action imprévue ou d'un endommagement réduisant la résistance d'un élément de structure.

6 NIVEAUX DE SÉCURITÉ REQUIS


Ce chapitre permet de déterminer sous forme d'indice de fiabilité cible _t le niveau de sécurité requis pour une situation de risque donnée. Le chapitre 5.2 (paramètres externes) donne plus de détails concernant les paramètres influençant la fiabilité cible.

La démarche proposée par le présent travail de recherche pour établir le niveau de sécurité requis est la suivante : En partant d'une *situation de risque*, on détermine la *catégorie de risque* liée à la grandeur du dommage suite à la ruine ainsi que celle liée à la valeur d'utilisation. La catégorie de risque la plus élevée est déterminante pour la situation de risque en question.

La connaissance de la catégorie de risque permet de déterminer le niveau de sécurité requis. Ce niveau est caractérisé par la probabilité de défaillance cible p_t ou l'indice de *fiabilité cible* t. Une probabilité de défaillance différente sera donc établie pour chaque situation de risque analysée.

Le critère 'valeurs immatérielles' n'étant pas directement quantifiable, l'ingénieur jugera de manière qualitative de son importance dans les cadres de l'évaluation ou de l'intervention pour établir une sécurité suffisante.

La figure 6.1 présente la démarche pour trouver la probabilité de défaillance cible p_t correspondant à une situation de risque.

Figure 6.1 – Démarche pour déterminer la probabilité de défaillance cible p_t correspondant à une situation de risque (CR: catégorie de risque)

Les paragraphes suivants sont présentés sous forme de "marche à suivre".

6.1 SITUATION DE RISQUE

Le niveau de sécurité est déterminé pour une situation de risque donnée. Le terme 'situation de risque' (p.ex. ruine par effondrement) correspond à la définition donnée dans la norme SIA 160 (§2.22) et ne doit pas être confondu avec le terme 'cause d'accidents' (p.ex. affouillement).

6.2 CATÉGORIE DE RISQUE

La catégorie de risque CR correspondant à la situation de risque considérée est la **valeur maximale** des catégories de risque liées au dommage CR_D , respectivement à l'utilisation CR_U .

$$CR = \max\left[CR_D, CR_U\right] \tag{6.1}$$

avec:

CR : catégorie de risque

CR_D : catégorie de risque liée à la grandeur du dommage suite à la ruine

CR_U : catégorie de risque liée à la valeur d'utilisation

La figure 6.2 montre l'établissement de la catégorie de risque CR nécessaire pour déterminer le niveau de sécurité requis.

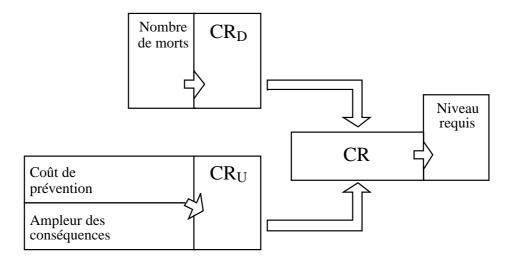


Figure 6.2 – Détermination de la catégorie de risque

Les tableaux 6.1 et 6.2 permettent de trouver les catégories de risque liées au nombre de morts (CR_D), respectivement aux conséquences (CR_U). Les tableaux sont basés sur les tableaux 5.1 et 5.2 respectivement.

Nombre de morts	Catégorie de risque
probable	CR_D
<1	I
1	II
5	III
10	IV
50	V
100	VI
500	VII

Tableau 6.1 – Catégorie de risque liée au dommage CR_D en fonction du nombre des morts

Les classes de conséquences dans le tableau 6.2 dépendent du paramètre qui est défini comme le rapport entre les coûts de la ruine et les coûts de construction : $= C_{ruine}/C_{const}$. (voire section 5.2.3)

	Conséquences							
Coûts relatives des mesures de sécurité	Mineures < 2	Modérées 2 < < 5	Majeures 5 < < 10					
grands	Ι	II	III					
moyens	III	V	VI					
petits	V	VI	VII					

Tableau 6.2 – Catégorie de risque CR_U correspondant au critère 'valeur d'utilisation' (adaptation du tableau du tableau 5.1)

Les valeurs données dans le tableau 6.2 s'appliquent à un système. Si l'analyse est faite au niveau d'un élément, on peut utiliser les mêmes valeurs à condition que la ruine du système soit dominée par la rupture de cet élément. En général dans ce genre de cas, les probabilités cibles vont diminuer car les coûts relatifs de la rupture pour un élément sont plus grands que pour la ruine du système. Les coûts de rupture d'un élément peuvent être bas uniquement pour les structures à grande redondance. Les catégories du tableau 6.2 sont données pour des structures ou éléments au stade de dimensionnement (et non pas au stade de construction). Les ruines dues aux erreurs humaines ou à l'ignorance et les ruines dues à des causes non liés à la structure ne sont pas couvertes par ce tableau.

6.3 INDICE DE FIABILITÉ CIBLE

Le tableau 6.3 présente la correspondance entre la catégorie de risque et la probabilité de défaillance annuelle cible p_t , respectivement l'indice de fiabilité annuelle cible p_t . La catégorie de risque CR est la plus grande valeur des catégories de risque liée au dommage CR_D et à la valeur d'utilisation CR_U .

Catégorie de risque CR	Probabilité cible p _t	Fiabilité cible β _t
I	10 ⁻³	3.1
II	5.10-4	3.4
III	10 ⁻⁴	3.7
IV	5·10-5	4.0
V	10 ⁻⁵	4.2
VI	5.10-6	4.4
VII	10 ⁻⁶	4.7

Tableau 6.3 – Probabilités et fiabilités annuelles cibles en fonction de la catégorie de risque

6.4 REMARQUE FINALE

L'approche proposée permet la définition du niveau de sécurité requis représenté par une fiabilité cible. Cette fiabilité doit être comparée à la fiabilité réelle face à la situation de risque à vérifier. La fiabilité cible ne peut pas être utilisée directement dans une vérification semi-probabiliste, ce qui nécessiterait une actualisation des facteurs partiels (en fonction de la fiabilité cible) pour la situation de risque à vérifier. La définition des facteurs partiels actualisés en fonction de la fiabilité cible devrait se faire dans une étude supplémentaire.

7 EXEMPLES D'APPLICATIONS

7.1 INTRODUCTION

Le but de ce chapitre est de donner plusieurs exemples de l'application de la méthode pour la sélection du niveau de sécurité requis décrite dans la chapitre 6. Ce niveau de sécurité doit être comparé à la fiabilité réelle pour une situation de risque donnée. Le calcul de la fiabilité réelle des ouvrages n'est pas présenté. Les exemples sont basés sur les situations de risque pour trois ponts sur l'autoroute A1 entre Genève et Lausanne (figure 7.1) :

- Passage inférieur de Perroy
- Passage supérieur du Coude
- Pont sur l'Aubonne

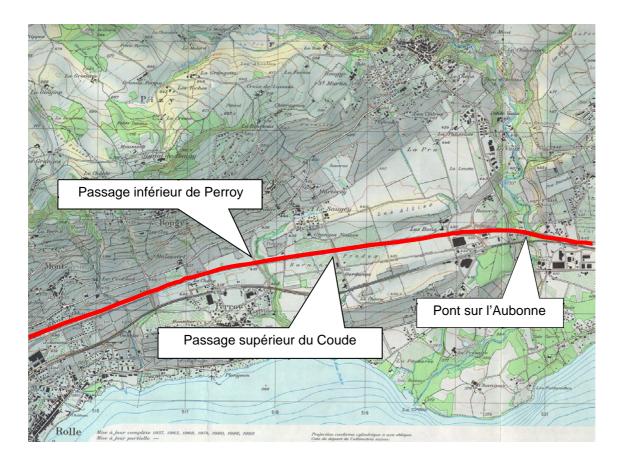
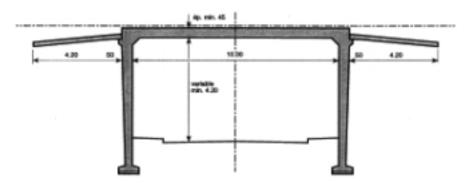
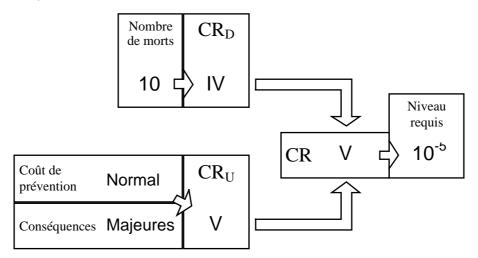


Figure 7.1 Situations des trois ponts sur l'autoroute A1 entre Genève et Lausanne.

7.2 PASSAGE INFÉRIEUR DE PERROY

Le passage inférieur de Perroy se situe au km 47.914 de la route nationale A1 entre Lausanne et Genève, et permet le franchissement de la route cantonale 52e entre Perroy et Féchy. Le système statique de l'ouvrage est un cadre en béton armé avec une portée de 10 m sur une largueur de 29.16 m. Le tablier du pont est une dalle d'une épaisseur minimale de 450 mm. La hauteur du gabarit du trafic est de 4.20 m en aval et de 5 m en amont côté Féchy. Une section de l'ouvrage est représenté à la figure 7.2.




Figure 7.2 Section longitudinale du passage inférieur de Perroy.

Comme situation de risque, on considère la ruine d'une moitié de la dalle par effondrement, c'est-à-dire la formation d'un mécanisme, due à la présence de deux poids lourds extrêmes.

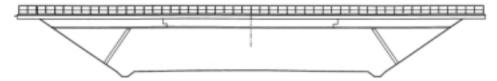
On admet que l'effondrement de la dalle aurait les conséquences suivantes :

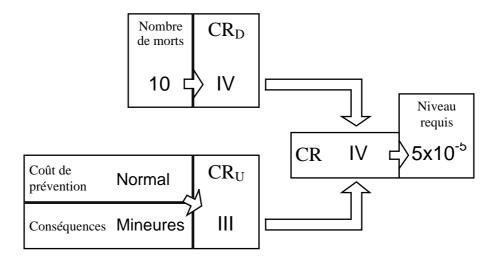
- Deux camions tombent sur la route inférieure et il y un carambolage sur l'autoroute, provoquant une dizaine de morts.
- L'autoroute est coupée dans une direction pendant la reconstruction de la moitié de la dalle.

On détermine le niveau de sécurité requis en fonction d'un dommage d'une dizaine de morts et en admettant que le coût de la prévention de l'effondrement est moyenne et les conséquences du point de vue de l'utilisateur sont majeures.

7.3 PASSAGE SUPÉRIEUR DU COUDE

Le passage supérieur du Coude est situé au km 48.800 de la route nationale A1 entre Genève et Lausanne et permet le passage du chemin AF 922 entre Féchy et Allaman. C'est un passage supérieur à béquilles typique, composé de 3 poutres précontraintes préfabriquées en I. Durant la construction, les poutres ont été posées sur un échafaudage, la dalle du tablier a été coulée en place sur des dallettes préfabriquées (coffrage perdu) et les câbles paraboliques de précontrainte de continuité ont été mis en tension pour créer l'uniformité de la structure. Ce système statique permet de franchir la route nationale avec un ouvrage élancé, avec des portées de rive de 10.95 m et une travée centrale de 27.30 m. L'élévation de l'ouvrage est représentée à la figure 7.3.




Figure 7.3 Élévation du passage supérieur du Coude.

Comme situation de risque, on considère l'effondrement de la poutre cantilever dû à la présence de deux poids lourds extrêmes.

On admet que l'effondrement aurait les conséquences suivantes :

- Un camion et la poutre tombent sur les quatre voies de l'autoroute et il y un carambolage provoquant une dizaine de morts.
- L'autoroute est coupée dans les deux directions pendant un jour pour nettoyage.

Le niveau de sécurité requis est fixé pour un dommage d'une dizaine de morts et en admettant que le coût de la prévention de l'effondrement est normal et les conséquences du point de vue de l'utilisateur sont mineures.

7.4 PONT SUR L'AUBONNE

Le pont sur l'Aubonne se compose de deux ponts jumeaux, dont seules les culées et les semelles de fondations sont communes. La superstructure est en béton précontraint et les piles en béton armé. L'ouvrage s'inscrit dans une courbe en plan qui comprend une clothoïde et un arc de cercle de 2000 m de rayon. La longueur totale du pont est de 277 m sur sept travées. La hauteur maximale des piles atteint 25 m, les travées de rives ont une portée de 34 m, les travées centrales de 37 m. La section longitudinale du pont est présentée à la figure 7.4.

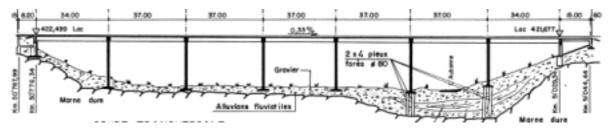
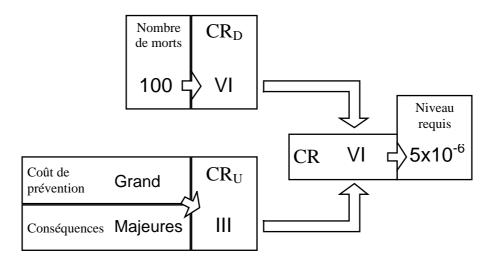
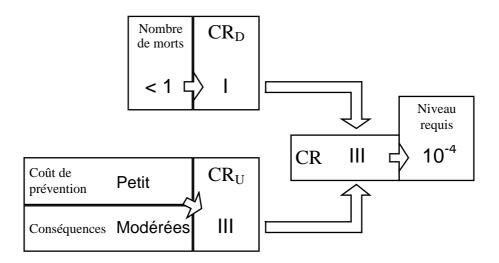



Figure 7.4 Section longitudinale du pont sur l'Aubonne.

On présente deux situations de risque :

- 1) L'effondrement d'une travée centrale, due à la formation d'un mécanisme provoqué par la présence de poids lourds extrêmes.
- 2) La plastification d'une poutre due au passage d'un poids lourd extrême.
- 1) On admet que l'effondrement de la travée centrale aurait les conséquences suivantes :
 - Deux camions et un autocar tombent de vingt mètres jusqu'à la vallée, et il y un carambolage sur l'autoroute, provoquant une centaine de morts.
 - L'autoroute est coupée dans une direction pendant la reconstruction du pont.


Pour cette situation de risque, on fixe le niveau de sécurité requis en admettant une centaine de morts, un grand coût de la prévention de l'effondrement et les conséquences majeures du point de vue de l'utilisateur.

2) Pour la plastification d'une poutre, on admet les conséquences suivantes :

- Il y a un risque faible d'un accident routier.
- Une voie de l'autoroute est fermée dans une direction pendant la réparation de la poutre.

Le niveau de sécurité requis vis-à-vis la plastification d'une poutre est fixé en admettant qu'il n'y aurait pas de morts, que le coût de la prévention de la plastification est petit et que les conséquences du point de vue de l'utilisateur sont modérées.

7.5 COMPARAISON DES RÉSULTATS

Les résultats de l'analyse des quatre situations de risque sont résumés dans le tableau 7.1. Les analyses démontre que, pour le même tronçon d'autoroute, le niveau de sécurité requis peut varier considérablement selon la situation de risque.

Situation de risque	Morts	CRD	Coûts & Conséquences	CRU	Max	β	$P_{\rm f}$
Passage inférieur de Perroy Ruine de la dalle	10	IV	normal majeures	V	V	4.2	10-4
Passage supérieur du Coude Ruine d'un joint gerber	10	IV	normal mineures	III	IV	4.0	5x
Pont sur l'Aubonne Ruine par effondrement	100	VI	grand majeures	III	VI	4.4	5x
Pont sur l'Aubonne Plastification d'une poutre	< 1	I	petit modérées	III	III	3.7	10-

Tableau 7.1 Niveau de sécurité requis pour quatre situations de risque

8 CONCLUSIONS

Ce rapport présente les résultats d'une étude sur le niveau de sécurité requis pour l'évaluation des pontsroutes existants. L'idée de base de l'étude consiste à définir une fiabilité cible comme étant une fonction du risque associé à des ruines de ponts, plutôt que de considérer le niveau de sécurité imposé par les normes de construction. L'étude s'est donc concentrée sur une analyse du risque associé aux ruines de ponts et aux risques acceptés par le public lors d'activités quotidiennes. Ces risques sont ensuite utilisés afin de définir un niveau de risque acceptable pour l'évaluation des ponts-routes existants.

Il est important de noter que le but de l'étude n'est pas de réduire globalement le niveau de sécurité du parc de ponts, mais plutôt de cibler un niveau uniforme du risque acceptable. L'approche proposée dans ce rapport définit, de manière réfléchie, un niveau de sécurité requis comme étant une fonction de situations de risque.

Le niveau de sécurité requis est ainsi défini comme une fonction de paramètres « externes » représentant la valeur et l'importance d'une structure. Ce niveau de sécurité requis est ensuite comparé à la sécurité estimée, calculée à partir des paramètres « internes » considérant l'état du pont.

L'approche proposée permet la définition du niveau de sécurité requis représenté par une fiabilité cible. Cette fiabilité doit être comparée à la fiabilité réelle face à la situation de risque à vérifier. La fiabilité cible ne peut donc pas être utilisée directement dans une vérification semi-probabiliste, ce qui nécessiterait une actualisation des facteurs partiels (en fonction de la fiabilité cible) pour la situation de risque à vérifier.

Les exemples d'application de l'approche proposée sur des ponts-routes démontrent, que pour le même tronçon d'autoroute, le niveau de sécurité requis peut varier considérablement selon la situation de risque.

9 BIBLIOGRAPHIE

- [Allen, 1972] ALLEN, D.E., CBD-147. Structural Safety, Canadian Building Digest, Toronto, 1972.
- [Allen, 1991] ALLEN, D.E., *Limit states criteria for structural evaluation of existing buildings*, Canadian Journal of Civil Engineering, 18, 1991.
- [Bassetti, 1998] BASSETTI, A., BAILEY, S.F., BANZ, A., Lastfaktoren für Eigenlast und Auflast zur Beurteilung der Tragsicherheit bestehender Strassenbrücken, Vereinigung Schweizerischer Strassenfachleute (VSS), Zürich, 1998 (Mandat de recherche OFROU 86/94, rapport N° 530).
- [Buckland, 1990] BUCKLAND, P.G., Canada's Advanced National Standard on Bridge Evaluation dans Bridge Management, Elsevier Applied Science, London, 1990.
- [Carper, 1997] CARPER, K.L., FELD, J., Construction failure, John Wiley, New York, 1997.
- [Ciampoli, 1998] CIAMPOLI, M., *Reliability Assessment of structural systems subject to deterioration over time* dans Structural Safety and Reliability, Balkema, Rotterdam, 1998.
- [CSN 73 140] Structural Steel Design, Norme tchèque, Czech Institute for Specifications, 1995.
- [Diamantidis, 2001] DIAMANTIDIS, D., *Probabilistic Assessment of Existing Structures*, Joint Committee on Structural Safety (JCSS), RILEM Publications Sarl, Cachan, 2001.
- [Ditlevsen, 1996] DITLEVSEN, O., MADSEN, H.O., *Structural reliability methods*, John Wiley and Sons, Chichester, 1996.
- [Enright, 1998] ENRIGHT, M.P., FRANGOPOL, D.P., Service-Life Prediction of deteriorating Concrete Bridges, ASCE Journal of Structural Engineering, Vol. 124, No. 3, 1998.
- [Faber, 2000] FABER, M.H., *Reliability based assessment of existing structures*, in 'Progress in Structural Engineering and Materials', Vol. 2 No 2, John Wiley & Sons Ltd., Bognor Regis, 2000.
- [Flaig, 1999] FLAIG, K., *Issues of practical concern* in 'Management of Highway Structures', Highways Agency, Thomas Telford, London, 1999.
- [Frey, 1994] FREY, F., *Analyse des structures et milieux continus*, Traité de Génie Civil Volume 2, Presses polytechniques et universitaires romandes, Lausanne, 1994.
- [Ghosn, 1996] GHOSN, M., MOSES, F., *Reliability of Bridge Structural Systems* in 'Structural Reliability in Bridge Engineering', McGraw-Hill, 1996.
- [Ghosn, 1998] GHOSN, M., MOSES, F., *Redundancy in Highway Bridge Superstructures*, Transportation Research Board, National Research Council, National Academy Press, Washington D.C., 1998.
- [Haldi, 1998] HALDI, P.-A., VULLIET, L., *Fiabilité et sécurité des structures civils*, Notes de cours, École polytechnique fédérale, Département de Génie Civil, Lausanne, 1998.
- [ISO/CD 13822] Bases for design of structures Assessment of existing structures, International Standard ISO/CD 13822 (rev.2), Committee Draft, International Organization for Standardization,, 1999.
- [Johannis, 1999] JOHANNIS, A., Zur Zuverlässigkeit und Wirtschaftlichkeit nichtlinear bemessener Stahlbetontragwerke, Technische Universität München, 1999.
- [Kunz, 1992] KUNZ, P., *Probabilistisches Verfahren zur Beurteilung der Ermüdungssicherheit bestehender Brücken aus Stahl*, Thèse No. 1023, Ecole polytechnique fédérale de Lausanne, 1992.
- [Marek, 1999] MAREK, P., GUSTAR, M., ANAGNOS, T., Codified design of steel structures using Monte Carlo techniques, Journal of constructional Steel Research, Vol. 52, Elsevier Science Ltd., 1999.
- [Melchers, 1999] MELCHERS, R.E., Structural Reliability and Prediction, John Wiley, Chichester, 1999.
- [Menzies, 1996] MENZIES, J.B., *Bridge safety targets and needs for performance feedback* in 'Structural Reliability in Bridge Engineering', McGraw-Hill, 1996.

- [Menzies, 1999] MENZIES, J.B., What researchers do and what practitioners need, Structural Safety, Volume 21, Issue 4, Elsevier Science Ltd., 1999.
- [NKB 36] *Recommendations for loading and safety regulations for structural design*, Nordic Committee on Building Regulations, NKB report no. 36, 1978.
- [Nowak, 1995] NOWAK, A.S., Calibration of LRFD Bridge Code, Journal of Structural Engineering, ASCE, No. 8, August 1995.
- [Nowak, 1996] NOWAK; A.S., SARAF, V.K., *Target Safety Level for Bridges* in 'Building an international community of Structural Engineers', Volume 2, American Society of Civil Engineers, New York, 1996.
- [OFROU, 1998] Valeur de conservation des ouvrages d'art, Directive, EDMZ, no 308.319.f, 1998.
- [Roelfstra, 1999] ROELFSTRA, G., ADEY, B., HAJDIN, R., BRÜHWILER, E., The Condition Evolution of Concrete Bridges based on a Segmental Approach, Non-destructive Test Methods and Deterioration Methods, FHWA Bridge Management Conference, Denver, 1999.
- [Scheiwiller, 1998] SCHEIWILLER, A., *Informationsverknüpfung im Bauwesen ; eine Anwendung der Bayes'schen Methode auf die Ingenieurproblematik*, Dissertation ETH Zürich Nr. 13039, Institut für Baustatik und Konstruktion, Eidgenössische Technische Hochschule, Zürich, 1999.
- [Schneider, 1994] SCHNEIDER, J., SCHLATTER, H.P., Sicherheit und Zuverlässigkeit im Bauwesen, vdf Verlag der Fachvereine, Zürich, 1994.
- [Schneider, 2000] SCHNEIDER, J., Safety A Matter of Risk, Cost and Consensus, Structural Engineering International, Volume 10, Number 4, November 2000, IABSE, Zürich, 2000.
- [Schuler, 1999] SCHULER, D., Wieviel Sicherheit müssen Geländer und Brüstungen bieten?, Schweizer Ingenieur und Architekt, Nr.37, Zürich, 1999.
- [Sertler, 1999] SERTLER, H., VICAN, J., SLAVIK, J., MENCIK, J., Zuverlässigkeitssbeurteilung bestehender Eisenbahnbrücken, Stahlbau, Vol. 68, Heft 1, Ernst & Sohn, Berlin, 1999.
- [Shetty, 1999] SHETTY, N.K., CHUBB, M.S., MANZOCCHI, G.M.E., *Advanced Methods of Assessment for Bridges* in 'Management of Highway Structures', Highways Agency, Thomas Telford, London, 1999.
- [SIA 2017] *Valeur de conservation des ouvrages*, Cahier technique SIA 2017, Société Suisse des ingénieurs et architectes, Zürich, 2000.
- [Stewart, 1997] STEWART, M.G., MELCHERS, R.E., *Probabilistic Risk Assessment of Engineering Systems*, Chapman & Hall, London, 1997.
- [Stewart, 1999] STEWART, M.G., VAL, D.V., *Role of Load History in Reliability-based Decision Analysis of Aging Bridges*, ASCE Journal of Structural Engineering, Vol. 125, No. 7, 1999.
- [Tabsh, 1991] TABSH, S.W., NOWAK, A.S., *Reliability of Highway Girder Bridges*, ASCE Journal of Structural Engineering, Vol.117, No.8, 1991.
- [Thoft-Christensen, 1982] THOFT-CHRISTENSEN, P., BAKER, M.J., Structural Reliability Theory and its Applications, Springer Verlag Inc., New York, 1982.

ANNEXE A1. Effondrements de ponts survenues en service

Nom + Description + Lieu	Année	Age +	ements de pon	Responsabilité	Conséquences	Enseignements	Dangers +
EN SERVICE Pont suspendu	rupture 1850	Surveillance 12 ans	Les câbles se rompent		220 morts	Mise en cause du	Qualité info [0-3] Danger inconnu
d'Angers (France)	1070	Pas d'inspection	alors que 500 militaires passent dessus	- ·		principe desPonts suspendus	(mise en résonance) [3
Pont ferroviaire à Ashtabula, OH (USA)	1876	11 ans Pas d'inspection	Rupture par fatigue d'un assemblage défectueux propagé par les passages cycliques des trains	Fatigue	80 morts	Des inspections détaillées auraient permis d'éviter la ruine	Danger inconnu (fatigue)
Pont ferroviaire de "Tay" Dundee (Grande Bretagne)	1876	1 an Pas d'inspection	Rafale de vent : Sous-dimensionnement aux charges de vent	Ingénieur et nature (vent)	75 morts	Des inspections détaillées auraient permis d'éviter la ruine	Mesures inadaptées (sous-dimensionné au vent) [3
Pont ferroviaire de Münchenstein (Suisse)	1891	16 ans	Instabilité au flambage des montants en acier	Ingénieur	73 morts 170 blessés	Attention à la conception	Mesures inadaptées (pas de contreventements, instabilité) [2]
Pont ferroviaire "Horseshoe"	1893		(Aucune information)				
(Tasmanie) Pont ferroviaire entre Angers et Poitier (France)	1907		Un train dérailla lorsqu'il franchit Le pont	Choc	28 morts		Danger accepté
Pont Munich (Allemagne)	1910		Hautes eaux	Affouillement			Danger négligé
Pont de Glen Loch Pennsylvanie (USA)	1912		Rupture par fatigue d'un câble vertical et déraillement d'un train	Fatigue	4 morts		Danger inconnu
Pont ferroviaire sur la rivière Yun (Chine)	1923	22 ans	Mise en résonance lors du passage de 2 locomotives	Chao	Aucun mort		Danger inconnu (mise en résonance)
Pont à bascule de la rue Webster en Californie (USA)	1926		Collision avec un bateau	Choc	Aucun mort		Mesures inadaptées [2]
Pont sur le Rhin à Tavanasa aux Grisons (Suisse)	1927	22 ans	Chute de masses rocheuses	Nature	Aucun mort		Danger non repéré
Pont suspendu de Whitesville, Virginie (USA)	1926	2	Rupture de la fixation d'un câble à cause d'un défaut de soudure	Ingénieur	6 morts 24 blessés		Mesures défectueuses
Pont à bascule sur la Rivière Hackensack New Jersey (USA)	1928	2 ans Pas d'inspection	Mauvaise prise en compte des effets dynamiques de la structure en mouvement	Ingénieur	Aucun mort		Danger non repéré (effets dynamiques)
Passerelle près de Koblenz (Allemagne)	1930		Surcharge lors d'une fête	Ingénieur	1 mort		Mesures inadaptées [2
Pont à New Mexico (USA)	1933		Erosion d'une pile immergée due à des hautes eaux	Nature (affouillement)			Mesures inadaptées
Pont dans l'Orégon (USA)	1937		Un camion un peu trop haut percuta le pont et provoqua son effondrement	Choc			Mesures inadaptées [2
Pont en Virginie (USA) Pont	1937		Un camion percuta le pont et provoqua son effondrement Surcharge de véhicules	Choc Ingénieur			Mesures inadaptées [2 Mesures inadaptées
dans le Colorado (USA)	1937	1 an	Choix d'un mauvais acier : St 52	Ingénieur	Aucun mort	Plus de construction	[2] Danger inconnu
autoroutier de Rüdersdorf (Allemagne)	1938	1 an	Rupture à basse température Rupture après le passage	Ingénieur	Aucun mort	en acier de type St 52 Choix du type d'acier	(type d'acier) [3] Danger non repéré
de tramway à Hasselt (Belgique)			d'un tramway Mauvais matériaux	goca		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(fragilisation de l'acier soudé) [3
Pont arc en acier de "la vue des chutes", NY (USA)	1938	40 ans Pas d'inspection	Instabilité des fondations et chocs blocs de glace	Ingénieur et nature (affouillement)		Meilleure protection des fondations	Mesures inadaptées (protection des fondations) [2
Pont suspendu de Tacoma, Washington (USA)	1940	4 mois Pas d'inspection	Excitation dynamique du tablier due à la fréquence du vent	Ingénieur et nature (vent)	Aucun mort, Pont fermé	Plus grande rigidité des tabliers de ponts suspendus	Danger inconnu (effets dynamiques)
Pont sur le Mississipi près de Chester, Illinois (USA) Pont levant	1944 1945	2 1/2 ans	Mauvais dimensionnement au vent Un train continua après le	Nature (Vent) et Ingénieur Choc	Aucun mort 1 mort		Mesures inadaptées (rafales de vent) [2] Mesures inadaptées
dans le New Jersey (USA)	1945		signal d'arrêt Surcharge de tracteurs agricoles	Ingénieur	68 blessés		Mesures inadaptées [2
près de Fresno, Californie (USA)	1947		Blocs de glace	Choc			Danger négligé
près de Koblenz (Allemagne)			Ü				[1
Nom + Description + Lieu EN SERVICE	Année rupture	Age + Surveillance	Change	Responsabilité	Conséquences	Enseignements	Dangers + Qualité info [0-3]
Pont dans le Maine (USA) Pont	1947 1947		Choc avec un camion Collision avec un bateau	Choc			Mesures inadaptées [2 Mesures inadaptées
à Düsseldorf (Allemagne)	1947				12 me-te		[1
Passerelle vers Stresa (Italie) Pont	1948		Surcharge de personnes	Ingénieur	12 morts		Mesures inadaptées [2
Elbow grade (USA)	1950		Effondrement du pont peu après son érection	Ingénieur	aucun mort		Mesures inadaptées

Pont Dupplessis dans la rivière St-Maurice, Québec (Canada)	1951		(Aucune information)				
Pont de Brooklyn vers Harrodsburg (USA)	1953	80 ans	Surcharge	Ingénieur	1 blessé		Mesures inadaptées
Pont sur la rivière "Peace" Canada)	1957	Pas de surveillance	Mouvements des ancrages sur les fondations qui n'étaient pas fixés correctement	Ingénieur	Aucun mort, Pont fermé		Mesures inadaptées (ancrages instables)
Pont arc de Topeka, Kansas USA)	1958	Lors de la démolition	Surcharge due au poids propre des équipements de démolition	Ingénieur	Aucun mort,	Autant de danger lors de la démolition qu'en construction	Danger négligé (lors de la démolition)
Pont rès de Bristol Angleterre)	1960		Collision de deux bateaux dans une pile du pont un jour brumeux	Choc	5 morts		Mesures inadaptées
Pont orès de Kloster Moraca Yougoslavie)	1962		Aucune information		21 morts 17 blessés		
Pont le la rue "King" ur la rivière Yarra USA)	1962	1 an Pas d'inspection	3 facteurs : acier à faible résistance conception défectueuse température ambiante basse	Ingénieur	Aucun mort		Mesures inadaptées ou danger négligé (conception défect.)
Pont le Maracaibo Vénézuéla)	1964		Collision d'un bateau contre plusieurs piles du pont	Choc	6 morts		Mesures inadaptées
Pont près de a Nouvelle Orléans USA)	1964		Collision d'un bateau	Choc	6 morts		Mesures inadaptées
Pont entre Intwerpen et Aachen Belgique)	1966	8 ans	Glissement de terrain	Nature	2 morts 16 blessés		Danger non repéré
Pont entre Antwerpen et Lüttich Belgique)	1966	8 ans	Hautes eaux	Affouillement	2 morts 13 blessés		Danger négligé
Pont vers Punta Piedras Vénézuéla)	1966		Surcharge	Ingénieur	20 morts		Mesures inadaptées
Pont d'Ariccia Italie)	1967	114 ans	Cause inconnue		2 morts		
Pont suspendu sur l'Ohio le "silver bridge" Vest virginia USA)	1967	40 ans Pas d'inspection	câble rompu par fatigue + présence de corrosion	Ingénieur : fatigue et corrosion	44 morts 2 disparus 9 blessés	Des inspections détaillées auraient permis d'éviter le pire	Danger négligé (manque d'inspection)
Pont entre Pise et Florence Italie)	1968		Hautes eaux durant des travaux de réparation	Affouillement	Aucun mort		Danger négligé
Pont lans la province d'Udine Italie)	1968		Hautes eaux	Affouillement			Danger négligé
Pont Monténégro)	1968		Surcharge	Ingénieur	6 morts 21 blessés		Mesures inadaptées
Pont dans l'Illinois USA)	1970		Le pont rompu au 1er passage d'un train (sous-dimensionnement)	Ingénieur			Mesures inadaptées
Pont le l'autoroute A1 I Hamborg Allemagne)	1970		Rupture successive d'un pylône puis du pont après de fortes oscillations dues au vent	Ingénieur (vent)			Mesures inadaptées
échangeur autoroutier le la vallée d'Antelope USA)	1971		Tremblement de terre	Nature (séisme)	Faibles dégâts		Danger accepté (séisme)
Pont en Géorgie USA)	1972		Collision d'un bateau	Choc	10 morts		Mesures inadaptées
Pont orès de Katerini Grèce)	1972		Hautes eaux	Affouillement	1 mort		Danger négligé
Pont nixte bois-acier Philippines)	1972		Rupture due à une surcharge en personnes lors d'une procession	Ingénieur	145 morts 200 blessés		Mesures inadaptées
Passerelle en bois à Pinzgau Autriche)	1974		Effondrement dû à des écoliers traversant tous ensemble	Ingénieur	8 morts 16 blessés		Mesures inadaptées
Nom + Description + Lieu EN SERVICE	Année rupture	Age + Surveillance	Causes	Responsabilité	Conséquences	Enseignements	Dangers + Qualité info [0-3]
Pont du lac Pontchartrain USA)	1974		Collision avec un bateau	Choc	3 morts		Mesures inadaptées
ont rès de Charleroi Belgique)	1974		Déraillement d'un train et collision avec le pont	Choc	17 morts 80 blessés		Mesures inadaptées
Pont à bascule lans l'Ontario Canada)	1974		Collision avec un bateau	Choc	2 blessés		Mesures inadaptées
Pont de bambou ur le Gange Inde)	1974		Aucune information		40 morts		
Pont Hobart en Tasmanie Australie)	1975		Collision d'un bateau contre 2 piles du pont	Choc	15 morts		Mesures inadaptées
Pont rès de Vranje Yougoslavie)	1975		Hautes eaux	Affouillement	13 morts		Danger négligé
Pont ur la M62 Angleterre)	1975		Une grue placée sous le pont s'est renversée sur celui-ci	Choc	2 morts		Mesures inadaptées
Pont de la rue .afayette à St-Paul, /linnesota USA)	1975	7 ans	Fissure traversante à mi-portée (Mauvais détails de soudures et basse température)	Ingénieur	Aucun mort		Danger négligé (conception défect : soudures croisées)
Pont sur e Danube à Vienne 'Autriche)	1976	40 ans	Conception défectueuse : Armature manquante et mauvais bétonnage	Ingénieur (chantier)	Aucun mort		Mesures défect. (sur chantier)

Pont Manchac en Louisiane (USA)	1976		Collision avec un bateau	Choc	2 morts 2 blessés	Mesures inadaptées
Passerelle en bois à Vorarlberg (Autriche)	1976		Effondrement dû à des écoliers traversant tous ensembles	Ingénieur	8 blessés	Mesures inadaptées [2]
Pont entre Turin et Mailand (Italie)	1977		Hautes eaux	Affouillement		Danger négligé [1]
Pont au nord de Gênes (Italie)	1977		Hautes eaux	Affouillement		Danger négligé [1]
Pont près de Sydney (Australie)	1977		Collision avec un train	Choc	89 morts	Mesures inadaptées [2]
Pont près de Moscou (Russie)	1977		Remise en état insuffisante lors d'une première rupture en 1940	Ingénieur	20 morts 100 blessés	Mesures inadaptées [2]
Pont dans la province de Punjab (Inde)	1977		Rupture lors du passage d'un omnibus	Ingénieur	22 morts	Mesures inadaptées [2]
Pont dans le nord-est indien (Inde)	1977		Déraillement d'un train et collision avec le pont	Choc	50 morts	Mesures inadaptées [2]
Pont à Assam (Inde)	1977		Effondrement lors du passage d'un train	Ingénieur	45 morts 100 blessés	Mesures inadaptées [1]
Pont (Bengladesch)	1978		Aucun enrobage de l'armature inférieure du tablier	Ingénieur		Mesures inadaptées
Pont à San Sebastian (Espagne)	1978		Rupture lors d'un rassemblement de personnes	Ingénieur	7 morts	Mesures inadaptées
Pont près de Dortmund (Allemagne)	1979		Un camion de 39t rentra en collision avec le pont	Choc	1 mort 6 blessés	Mesures inadaptées [2]
Pont-mixte près de Duisburg (Allemagne)	1979		La pelle mécanique d'un buldozer s'est arrachée et a fait tomber le pont	Choc	8 morts	Mesures inadaptées [2]
Pont près de Salvatierra (Mexique)	1979		Aucune information		7 morts	[0]
Pont sur le canal Hood à Washington (USA)	1979	21 ans	Vent + orage	Affouillement Vent	Aucun mort	[0]
Pont à Göteborg (Suède)	1980		Collision avec un bateau	Choc	8 morts	Mesures inadaptées [2]
Pont dans le Wiscontin (USA)	1980		Collision avec un camion	Choc	1 blessé	Mesures inadaptées [2]
Pont en Floride (USA)	1980		Collision avec un bateau	Choc	35 morts	Mesures inadaptées [2]
Pont suspendu vers Munster (Allemagne)	1980		Collision avec un camion alors qu'il y avait du verglas	Choc	1 mort	Mesures inadaptées [2]
10Ponts au centre de la chine (Chine)	1981		Hautes eaux	Affouillement		Danger négligé

Nom + Description + Lieu EN SERVICE	Année rupture	Age + Surveillance	Causes	Responsabilité	Conséquences	Enseignements	Dangers + Qualité info [0-3]
Pont en Colombie Britannique (Canada)	1981		Hautes eaux et chocs de tronc d'arbres	Choc	6 morts		Danger négligé
Pont à Munich (Allemagne)	1981		Collision avec un camion benne	Choc	4 blessés		Mesures inadaptées
Pont sur le Brajmanbari (Bengladesch)	1982		Le pont se rompu lorsqu'un bus plein passa dessus	Ingénieur	45 morts		Mesures inadaptées
Pont tubulaire en Lorraine (France)	1982		Collision avec un bateau	Choc	7 morts		Mesures inadaptées
Pont dans l'Ohio (USA)	1982		Matériaux de construction inadéquats et de trop faible qualité	Ingénieur	5 morts 4 blessés		Mesures inadaptées
Pont en bois sur l'île Cebu (Philippines)	1983		Surcharge	Ingénieur	20 morts		Mesures inadaptées
Travée de 30 m du pont biais sur la rivière Mianus (USA)	1983	35 ans Pas d'inspection	Conception défectueuse : Pause d'un revêtement 10 ans avant, bouchant les systèmes d'évacuation des eaux	Ingénieur : corrosion	3 morts 3 blessés	Des inspections détaillées auraient permis d'éviter le pire	Danger négligé (négligence dans la conception)
Pont de tramway aérien (Chine)	1983		Collision avec un bateau	Choc	7 morts	io piro	Mesures inadaptées
Pont suspendu sur la rivière lapo (Brésil)	1984		Aucune information		8 morts		
Pont au centre de l'Inde (Inde)	1984		Hautes eaux alors qu'un train passait dessus	Choc Affouillement	102 morts 100 blessés		Danger négligé et Mesures inadaptées
Pont suspendu près de Munnar (Inde)	1984		Aucune information		14 morts 11 blessés		[
Pont suspendu de Sully-sur-Loire (France)	1985		Mauvaise qualité des aciers des câbles, fragiles à basse température	Ingénieur	Aucun mort		Mesures inadaptées
Pont sur la rivière Schoharie à NY (USA)	1987	31 ans Réhabilitation en 1981	Erosion à la base d'une pile et mauvais système statique (effet domino)	Nature (affouillement) et Ingénieur	10 morts	Protections adéquates des piles immergées + sys.st.	Danger non repéré et mesures inadaptées [:
Pont en pierre sur la route du Gotthard (Suisse)	1987	18 ans	Le pont fut emporté par les hautes eaux de la Reuss	Affouillement	Aucun mort		Danger négligé
Passage supérieur sur autoroute (Allemagne)	1989		Collision d'un camion contre une pile	Choc	1 blessé		Mesures inadaptées
Pont au sud de Los Mochis (Mexique)	1989		Le pont fut emporté par les eaux alors qu'un train passait dessus	Affouillement	103 morts 200 blessés		Danger négligé
Pont supérieur entre San Fransisco et la baie d'Oakland, Californie (USA)	1989	53 ans	Tremblement de terre	nature (séisme)	1 mort	Nécessité d'une réactualisation du dimensionnement au séisme	Danger négligé (tremblement de terre)
Double viaduc autoroutier de Cypress, Californie (USA)	1989	32 ans	Tremblement de terre + Conception inadéquate du détail de l'armature entre la colonne et le tablier du pont supérieur	Ingénieur et nature (séisme)		Nécessité d'une réactualisation du dimensionnement au séisme	Mesures inadaptées (tremblement de terre)
Pont flottant de Murrow, Washington (USA)	1990	50 ans En travaux d'entretien	Immersion des travées	Affouillement	Aucun mort		Danger négligé (éclats des vagues)
Echangeur autoroutier de la vallée d'Antelope	1992	21 ans après le 1 ^{er} , Aucune	Tremblement de terre	Ingénieur et nature (séisme)	Rupture d'une travée duPont	Réactualisation de la vérification de la sécurité structurale	Danger négligé (séisme 21 ans après le premier)
(USA) Pont vers Kilosa (Tanzanie)	1992	mesure	Le pont fut emporté par les eaux alors qu'un train passait dessus	Affouillement	100 morts		Danger négligé
Pont entre Nairobi et Mombassa (Kenia)	1993	95 ans	Le pont fut emporté par les eaux alors qu'un train passait dessus	Affouillement	144 morts		Danger négligé
Pont Cicero en Sicile (Italie)	1993	< 100 ans	Hautes eaux	Affouillement	4 morts 1 blessé		Danger négligé
Pont en treillis en Alabama (USA)	1993		Collision avec un bateau	Choc	47 morts		Mesures inadaptés
Travée du Pont de Songsu à Séoul (Corée du Sud)	1994	15 ans	Augmentation de la charge de trafic sans vérifications préalables + détails constructifs	Ingénieur	32 morts		Danger négligé et mesures déf. (s-dim.)
Pont "Twin" en Californie (USA)	1995		Affouillement autour de ses fondations lors d'un jour de crue	Nature (affouillement)	7 morts		[1
Pont en béton (Palau) Pont	1996 1996	~ 90 ans	Mauvaise qualité de béton et corrosion Affouillement des fondations	Ingénieur corrosion Nature	2 morts 4 blessés		Mesures inadaptés
de "Walnut street" (USA)	1330	- 50 alis	à cause des hautes eaux du Susquehanna et de la présence de beaucoup de glace	(affouillement)			[1

Nom + Description + Lieu EN SERVICE	Année rupture	Age + Surveillance	Causes	Responsabilité	Conséquences	Enseignements	Dangers + Qualité info [0-3]
Pont de Terrace (Canada)	1997		Pendant des travaux d'entretien, la charpente s'est effondrée dans le cours d'eau		1 mort 1 disparu 4 blessés		[0]
Pont sur la rivière Jarkon (Israël)	1997		Mal construit et surchargé	Ingénieur	2 morts 64 blessés		Mesures inadaptés [1]
Pont routier (Pérou)	1998		Aucune information		30 morts		[0]
Passage supérieur Eschede (Allemagne)	1998		Déraillement d'un train arrachant une pile du pont	Utilisateur (choc)	100 morts 88 blessés		Danger accepté (choc) [2]

ANNEXE A2. Effondrements de ponts survenues en construction

Nom + Description + Lieu EN CONSTRUCTION	Année rupture	Age + Surveillance	Causes	Responsabilité	Conséquences	Enseignements	Dangers + Qualité info [0-3]
Pont Morawa à Ljubitschewo (Serbie)	1893	Fin de construction	Rupture lors d'un essai de charge (sous-dimens.)	Ingénieur	Aucun mort		Mesures inadaptées ou danger négligé [2]
Pont ferroviaire de Québec (Canada)	1907	En construction	Conception défectueuse : sous-évaluation du pp de la structure (sous-dimens.)	Ingénieur	76 morts		Mesures défect. (conception défect. et erreur calcul) [3]
Pont ferroviaire de Québec (Canada)	1916	En construction	Conception défectueuse	Ingénieur	13 morts		Mesures défect. (une pièce de support s'est rompue)
Arche de Sando (Suède)	1939	En construction	Mauvaise conception des structures en bois	Ingénieur	18 morts		Danger négligé (mauvaise concept.)
Pont autoroutier de Sullivan Square à Boston (USA)	1952	En construction	Instabilité lors du montage (Erreur de conception et/ou de montage)	Ingénieur	Aucun mort		Mesures défect. (conception défectueuse, instab.)
Pont "Narrows" Vancouver (Canada)	1958	En construction	Défaut de conception	Ingénieur	15 morts 20 blessés		Mesures inadaptées (erreur de conception)
Pont flottant sur le canal Hood à Washington (USA)	1958	En construction	Des trous dans les coffrages ont permis à l'eau de s'infiltrer	Affouillement	Aucun mort		Danger négligé (pénétration d'eau)
Pont sur le Danube à Vienne	1969	En construction	Conception défectueuse sans tenir compte des effets de la température	Ingénieur	Aucun mort		Mesures inadaptées (mauvaise prise en considération des effets d'une baisse
(Autriche) Pont de Cleddau à Milford Haven (Pays de Galle)	1970	En construction	Effondrement lors du poussage	Ingénieur	4 morts		de température) [2] Mesures inadaptées (instab. au poussage)
Pont de West Gate à Melbourne (Australie)	1970	En construction	Effondrement lors du montage	Ingénieur	34 morts	Même bureau que pour le pont de Cleddau (1970)	Mesures inadaptées (instab. au montage)
Pont sur le Rhin à Koblenz (Allemagne)	1971	En construction	Déformations excessives du caisson en acier (instabilité : voilement)	Ingénieur	13 morts		Mesures inadaptées (défaut de construct.) [2]
Pont sur le Rhône à Illarsaz en Valais (Suisse)	1973	En construction	Rupture des poutres maîtresses en acier lors du poussage du tablier en béton (instabilité)	Ingénieur	Aucun mort		Mesures inadaptées (pente et ch. mont.)
Viaduc sur la Sorge à Valengin, Neuchâtel (Suisse)	1973	En construction	Poussage dans le sens d'une pente trop importante (6,5%) (instabilité : glissement)	Ingénieur	Aucun mort		Danger négligé (glissement)
Echangeur Riley à l'est de Chicago (USA)	1982	En construction	Conception défectueuse : Surcharge sur un système d'étayage inadéquat	Ingénieur	13 morts 18 blessés		Mesures inadaptées (mauvaise concept.)
Pont à Elwood, Kansas (USA)	1982	En construction	Conception défectueuse	Ingénieur	1 mort 8 blessés		Mesures inadaptées
Pont en caisson (Allemagne)	1985	En construction	Sous-dimensionnement : pilier provisoire	Ingénieur	Aucun mort		Mesures inadaptées (piles prov. Sous-dim)
Pont à El Paso,Texas (USA)	1987	En construction	Echafaudage inadéquat	Ingénieur	1 mort 7 blessés		Mesures inadaptées (conception défect.) [2]
Pont autoroutier près de Seattle (USA)	1988	En construction	Les poutres n'étaient pas encore tenues ensembles par les entretoises, effet domino	Ingénieur	Aucun mort		Mesures inadaptées (instabilité) [2]
Pont en caisson à Los Angeles (USA)	1989	En construction	Effondrement lors du démontage de l'échafaudage pour rabaisser un voussoir préfabriqué	Ingénieur	5 blessés		Mesures inadaptées (instab. au montage)
Passage supérieur à Baltimore (USA)	1989	En construction	Conception défectueuse : Pas encore de précontrainte et charges asymétriques	Ingénieur	14 blessés		Mesures inadaptées (échafaudage + étais)
Pont sur le Mississippi (USA)	1990	En construction	(Aucune information)	Ingénieur	1 mort Plusieurs blessés		[0]
Pont à Hiroshima (Japon)	1991	En construction	Problème de stabilité (glissement)	Ingénieur	14 morts		Danger non repéré (instabilité) [0]
Echafaudage d'échangeur autoroutier à Los Angeles (USA)	1991	En construction	Sous-dimensionnement : Surcharge asymétrique imprévue	Ingénieur	Aucun mort		Danger non repéré (sous-dimens.)